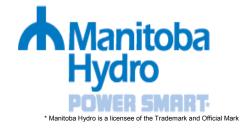


MANITOBA HYDRO MONITORING STUDY

Performance of Ground Source Heat Pumps in Manitoba



Reviewed By: Denton Vandersteen, P.Eng. Manitoba Hydro Customer Engineering Services

June, 2009

Project Co-Funded By:

This Manitoba Hydro report, and all information, drawings, procedures, methods, presentation, etc. contained (collectively referred to as the "Report") is provided subject to the following terms and conditions. If any recipient does not agree to, or is uncertain as to, any term or condition governing the use of the Report, please do not access or use this Report, and immediately contact Manitoba Hydro's Earth Power Program at (204) 360-4273 to arrange for its return to Manitoba Hydro:

THE REPORT IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND AND MANITOBA HYDRO EXPRESSLY DISCLAIMS ALL WARRANTIES, CONDITIONS, UNDERTAKINGS, OR TERMS, WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTIES AS TO MERCHANTABILITY, MERCHANTABLE QUALITY, AND FITNESS FOR ANY PARTICULAR PURPOSE. MANITOBA HYDRO DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATION WHATSOEVER REGARDING THE USE. RESULTS OF USE. ACCURACY. CORRECTNESS. USEFULNESS. RELIABILITY, NON-INFRINGEMENT OF ANY THIRD PARTY RIGHT, OR FITNESS FOR ANY PARTICULAR PURPOSE, OF THE REPORT. THE ENTIRE RISK AS TO THE USE OR INABILITY TO USE OF THE REPORT IS ASSUMED SOLELY BY THE RECIPIENT. REGARDLESS OF CIRCUMSTANCES AND REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT OR IN TORT (INCLUDING NEGLIGENCE OR PRODUCTS LIABILITY) OR UNDER ANY OTHER LEGAL THEORY, MANITOBA HYDRO SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL, PUNITIVE OR EXEMPLARY LOSSES OR DAMAGES OF ANY NATURE OR KIND WHATSOEVER, INCLUDING, BUT NOT LIMITED TO, LOSSES OR DAMAGES ARISING OUT OF OR RESULTING IN ANY MANNER FROM ANY USE OF OR ANY INABILITY TO USE THE REPORT. EVEN IF MANITOBA HYDRO MAY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES OR DAMAGES OR IF SUCH LOSSES OR DAMAGES WERE REASONABLY FORSEEABLE.

Acknowledgements

This monitoring project was co-funded by Manitoba Hydro and the Canadian GeoExchange Coalition (CGC). Manitoba Hydro wishes to thank the CGC for their contribution to this project.

Manitoba Hydro wishes to further acknowledge and thank the heat pump contractors and the homeowners who were involved in this project for their co-operation. Without their assistance this project would not have been possible.

Page iii

TABLE OF CONTENTS

1.0	Executive Summary	. vii
2.0	Background	1
<u>3.0</u>	Study Objectives	2
	Test Method SCOP	3
4.2	<u>SEER</u> Desuperheater Energy Savings	3

5.0	Heat Pump System Monitoring Method	. 5
-	Total Electrical Energy (kWh) Input into the System	
5.2	Total Energy (BTUh) to and from Ground Loop Heat Exchanger	. 5
	Ground Loop Temperature Measurements	
5.2.2	Ground Loop Fluid Flow Measurements	. 6
	Ground Loop Fluid Specific Gravity Verification	
5.2.4	Ground Loop Fluid Flow Meter Correction Factor	. 7

6.0	Desuperheater Monitoring Method	8
7.0	Verification of Measurements and Accuracies	9
7.1	Monitoring Equipement Accuracy and Precision Verification	9
	1 Current Transducers	
	2 Potential Transducers	
	3 RTD Temperature Sensors	
	4 Enernet K20 Data Logger	
	5 Ground Loop Flow Meters and Domestic Hot Water Volumetric Meters	
7.2	Installation and Post-Installation Verification (in-situ) Testing	
8.0	Test Site Selection	
9.0	Heating System Performance	12
9.1	Energy Efficiency	
9.2	Cost Savings	
9.3	Auxiliary Heat	
9.4	Entering Fluid Temperatures	
9.5	Compressor	
9.6	Ground Loop Pump	
9.7	Fan Motor	
10.0	Cooling Season Performance	20
10.0		
11.0	Domestic hot Water Heater Savings	22
11.0	Domestic not water rieater Savings	
12.0	Operating Statistics	24
12.1		
12.2		
	Heat Pump Starts	
12.0	<u>- roat i any otato</u>	

13.0 Conclusions	27
14.0 Recommendations	28
Appendix A - General House Descriptions	29
Appendix B - Map of Monitored Locations	40
Appendix C - Data Acquasition Devices	42
Appendix D - Test Instruments and Reference Standards	46
Appendix E - SCOP and SEER Calculation Constants	48
Appendix F - Monthly Heat Pump Energy Data Tables	50
Appendix G - Domestic Hot Water Data Tables	61
Appendix H - Run Hour and Starts Data Tables	68
Appendix I - Entering Fluid Temperature Data Tables	72

LIST OF TABLES

Table 1 - Monthly Heat Pump Data for House # 1	51
Table 2 - Monthly Heat Pump Data for House # 2	52
Table 3 - Monthly Heat Pump Data for House # 3	53
Table 4 - Monthly Heat Pump Data for House # 4	54
Table 5 - Monthly Heat Pump Data for House # 5	55
Table 6 - Monthly Heat Pump Data for House # 6	56
Table 7 - Monthly Heat Pump Data for House # 7	57
Table 8 - Monthly Heat Pump Data for House # 8	58
Table 9 - Monthly Heat Pump Data for House # 9	59
Table 10 - Monthly Heat Pump Data for House # 10	60

Table 11 - Annual Domestic Hot Water Data Summary for Monitored Houses	
Table 12 - Monthly Domestic Hot Water Data for House # 1	
Table 13 - Monthly Domestic Hot Water Data for House # 2	
Table 14 - Monthly Domestic Hot Water Data for House # 3	
Table 15 - Monthly Domestic Hot Water Data for House # 4	
Table 16 - Monthly Domestic Hot Water Data for House # 5	
Table 17 - Monthly Domestic Hot Water Data for House # 6	
Table 18 - Monthly Domestic Hot Water Data for House # 7	
Table 19 - Monthly Domestic Hot Water Data for House # 8	
Table 20 - Monthly Domestic Hot Water Data for House # 9	
Table 21 - Monthly Domestic Hot Water Data for House # 10	
Table 22 - Heat Pump Annual Run Hour Data (Total)	
Table 23 - Heat Pump Run Hour Data (Heating Mode)	
Table 24 - Heat Pump Run Hour Data (Cooling Mode)	70
Table 25 - Annual Heat Pump Compressor Starts Data	71
Table 26 - Average Entering Fluid Temperature Data (Heating Mode)	73
Table 20 - Average Entering Fluid Temperature Data (Heating Mode)	
Table 27 - Average Entering Fluid Temperature Data (Cooling Mode)	72
Table 00 Minimum (Maximum Estador Elvid Tanan antone Data	
Table 28 - Minimum/Maximum Entering Fluid Temperature Data	

1.0 Executive Summary:

Manufacturers of geothermal heat pumps have traditionally reported coefficients of performance (COP) of 3.1-to-4.0 and energy efficiency ratio (EER) of 14-to-24. These efficiency levels are based on instantaneous tests conducted under controlled conditions and do not consider all of the losses that may occur in an installed system operating in varying conditions.

This study monitored ten homes over an extended period during all heating, cooling and shoulder months to determine the average Seasonal Coefficient of Performance (SCOP) and Seasonal Energy Efficiency Ratio (SEER) of typical heat pump systems operating in an "as-installed" environment.

Test data for ten Manitoba homes shows that the SCOP of the monitored ground source heat pump systems range from 1.8 to 3.5 with an average of 2.8 for a one year period. SCOP is defined as the total energy (kWh) delivered by the system divided by the total electric energy input (kWh) to the system over one heating season. The average annual electric energy saved was 15,842 kWh when compared to conventional electric resistance heat. The systems operated for an average of 2041 equivalent full load hours in heating mode.

The average SEER of the ten monitored homes during the cooling season was 13.3. The estimated average annual energy saved was 17 kWh compared to a split central air conditioning system with a SEER of 13. The cooling savings with a ground source heat pump were minimal but this may not be a fair comparison since the SEER 13 assumed for the central air conditioner is based on controlled test conditions and is not based on actual monitored field data. The systems operated for an average of 218 equivalent full load hours in the cooling mode.

The desuperheater option reduced the average domestic hot water electric energy usage by 610 kWh (18%). It was found that 86% of the savings were produced during the heating season. Therefore, the heat pump had to operate longer to transfer this additional energy requirement. This additional energy requirement during the heating season only increased seasonal imbalance on the ground. Most of the systems operated with storage water tank temperatures lower than the 60 °Celsius (140 ° Fahrenheit) that is the minimum temperature setting requirement of the National Plumbing Code for electric storage water heaters. One of the desuperheater pumps was replaced prior to the study period due to motor failure. Another pump failed during the study period. Considering all of these factors, the desuperheater option does not appear to provide the same benefit in a heating dominated climate as it would in a cooling dominated climate.

2.0 Background:

Manitoba Hydro has been promoting geothermal heat pump systems through the Residential Earth Power Program since April of 2002. Since program launch, over 950 customers have applied for the Residential Earth Power Loan. Manitoba Hydro has worked with industry and other partners to determine the actual geothermal system performance over an entire heating and cooling season. The performance levels reported by various manufacturers are based on an instantaneous test and do not consider all of the losses that occur in an actual system. The performance values reported in this study reflect measured performance values monitored at "as-installed" working systems.

In two previous case studies in Manitoba, where actual field performance was measured it was found that the seasonal coefficient of performance (SCOP) over an entire heating season for five homes ranged from 1.4 to 2.9. The case study that included four homes indicated that two of the homes produced SCOP's of 1.4 and 1.6 but lack of maintenance and improper use of the system was found to be the cause of their poor performance. The other two homes in that study had no operational issues and produced SCOP's of 2.5 and 2.8. The second previous case study was of a single home, measured a SCOP of 2.9 for one heating season, and an SCOP of only 2.2 in a subsequent heating season. The reduction in performance in the second year was caused by a control failure which caused the auxiliary heat to operate excessively.

Based on the two previous case studies and analysis of heat pump customer billing data, Manitoba Hydro uses an average ground source heat pump SCOP of 2.5 and an EER of 14 for calculating the energy savings claimed by our Earth Power program. Manitoba Hydro wanted to study more residential ground source heat pump installations to provide a larger and more varied sample. A larger sample was expected to more accurately represent heat pump SCOP's of reasonably installed systems and therefore ensure that the energy savings claimed by the program would be fair and realistic.

It was felt that more extensive research needed to be completed to clarify the circumstances under which a desuperheater is beneficial in a heating dominated climate such as Manitoba. This is important because the high cost of a desuperheater increases the initial cost of the system and the high cost barrier of geothermal systems has been identified as one of three main barriers to widespread adoption of the technology. Removing the desuperheater from this initial cost may reduce the simple payback period. Conversely, when circumstances make the desuperheater a worthwhile investment, the payback period on the overall system may actually be reduced. Actual desuperheater field performance needed to be measured.

Since Manitoba is a heating dominated climate there are concerns regarding the long term thermal performance of the ground loop. This study will measure the annual energy imbalance that is placed on the ground loop due to heating, cooling, and hot water (desuperheater). The annual energy imbalance is calculated by subtracting the quantity of heat rejected to the ground from the quantity of heat removed from the ground loop in a one year period.

3.0 Study Objectives:

The objectives of the study were to determine:

- 1. an average annual Seasonal Coefficient of Performance (SCOP for the heating season), and an average Seasonal Energy Efficiency Ratio (SEER for the cooling season),
- 2. the average annual water heating electric energy reduction due to the desuperheater, and
- 3. the average annual heating savings provided by a reasonably well installed ground source heat pump system in Manitoba.

The ten homes monitored are a biased sample since most of the homes were volunteered for the project by experienced and established heat pump contractors and /or distributors that were contacted and nine of the systems were relatively new (less than three years old). The one older system in the study was the only open loop (well to well system) in the study. This system was re-commissioned when it was discovered at the preliminary site visit that it was performing poorly (COP of 1.5) due to water supply issues.

4.0 Test Method:

Monitoring of these systems was achieved by sub-metering the ground loop energy (extraction and rejection), the electrical energy provided to all the electrical components connected to the heat pump unit, the energy provided by the desuperheater (DSH), and the electrical energy provided to the domestic hot water heater for ten homes located throughout Manitoba for an entire heating and cooling season.

4.1 Seasonal Coefficient of Performance (SCOP*)

The SCOP* of each unit was determined by summing the heat energy provided to the home by the ground loop with the heat energy provided to the home by the electrical components of the heat pump then dividing the sum by the electrical energy required to operate the heat pump for an entire heating season.

SCOP Calculation:

$\frac{\text{SCOP} = \frac{\text{kWh}_{\text{GL}} + \text{kWh}_{\text{EL1}}}{\text{kWh}_{\text{EL2}}}$

Where: \mathbf{kWh}_{GL} = Ground Loop kWh Output \mathbf{kWh}_{EL1} = compressor, fan, DSH pump, aux. heater kWh usage \mathbf{kWh}_{EL2} = compressor, fan, DSH pump, aux. heater and ground loop pump kWh usage

4.2 Seasonal Energy Efficiency Ratio (SEER*)

The SEER* of each unit was determined by adding the heat energy (BTU) rejected to the ground loop and the desuperheater during the cooling season, subtracting the heat energy (BTU) provided to the ground loop and desuperheater loop by the electrical components then dividing this total by the electrical energy required to operate the heat pump for an entire cooling season.

SEER Calculation:

 $SEER = (BTU_{GL} + BTU_{DSH}) - (BTU_{EL})$ WheL

Where:**BTU**_{GL} = heat rejected to ground loop **BTU**_{DSH} = heat rejected to desuperheater **BTU**_{EL} = Compressor, Fan, and desuperheater pump electrical usage (kWh) converted to BTU

*The ground loop pump electrical energy consumption was not included in the electrical heat energy since it was already accounted for in the ground loop heat energy measurements.

4.3 Desuperheater (DSH) Energy Savings

DSH Energy Savings (kWh) = <u>kWhDSH - kWhELDSH(heating Mode or Cooling Mode)</u>

Where: $kWh_{DSH} = DSH$ Output (kWh) $kWh_{ELDSH} =$ electrical energy into desuperheater energy output
 kWh_{ELDSH} (Heating Mode) =DSH Output(kWh)/COP
 kWh_{ELDSH} (Cooling Mode) = DSH pump energy(kWh)

5.0 Heat Pump System Monitoring Method:

To determine the SCOP and SEER of each heat pump system, the following values were required to be measured and applied to the SCOP and SEER Calculations:

- 1. Total kWh electrical energy input into the system
- 2. Total BTU Output from the ground loop heat exchanger.

Refer to Appendix C for a listing of measurement and monitoring devices and specifications.

5.1 Total Electrical Energy (kWh) Input into the System:

The following electrical loads were monitored to determine total kWh energy consumed by the heat pump system:

- 1. Compressor (Stage 1 and 2 if applicable)
- 2. Auxiliary Heat
- 3. Ground Loop Pump (1 or 2 pumps, Stage 1 and 2 as applicable)
- 4. Fan Motor (heating and cooling mode)
- 5. Desuperheater pump

Split-core current transducers (CT's) were placed on the conductor supplying each electrical component so that each component's consumption could be measured and monitored separately. One potential transducer (PT) was connected to the main electrical service panel to reference the line-to-line voltage supply to the heat pump system. This allowed the data logger to monitor correct Power Factor and kWh measurements of each component.

The CT's and PT's selected for this project have a manufacturer stated accuracy value of $\pm 1.0\%$ of measured value.

Refer to Appendix C for detailed CT and PT specifications.

5.2 Total Energy (BTU) to and from the ground loop heat exchanger:

 $Q = m \cdot c_p \cdot \Delta T$

Where: Q = heat energy transferred [BTU] m = mass [pounds] c_p = heat capacity [BTU/pound·°F] ΔT = temperature difference

Page 5

To determine the BTU output of the heat pump system, the temperature differential ΔT between the ground loop-in and out had to be measured as well as the total fluid mass through the heat exchanger. The following values and test points were monitored to determine total BTU energy produced through the heat exchanger:

- 1. Ground loop temperature Fahrenheit (°F) out
- 2. Ground loop temperature (°F) in
- 3. Temperature differential at heat exchanger ($\Delta T = {}^{\circ}F_{in} {}^{\circ}F_{out}$)
- 4. Ground loop fluid flow rate (USGPM)
- 5. Ground loop fluid flow duration (minutes)

BTU values were converted to kWh by dividing by 3.413

5.2.1 Ground loop temperature measurements:

Ground loop temperatures were monitored using Type 385, 1000 Ohm platinum Resistance Temperature Detectors (RTD) installed directly in the fluid flow using compression fittings mounted to the ground loop piping before and after the heat exchanger coil. To minimize ambient effects on the RTD measurements, efforts were made to ensure, wherever possible, each RTD test point was of equal distance and positioning relative to each other and the heat exchanger input-output locations. To further minimize ambient effects, the data logger analog temperature channels were "locked" to the compressor current sensor channel so that ground loop temperatures were monitored and logged only when the compressor was running in heating/cooling modes of operation.

RTD's selected for this project were Class B accuracy giving an uncertainty of \pm 1.5% at 32 °F (0°C) with a repeatability of better than 0.8% (-100°C to 100°C). Each individual RTD certainty produces an overall Δ T calculation uncertainty of \pm 3.0% of measured value. Refer to Appendix C for detailed RTD specifications.

5.2.2 Ground loop fluid flow measurements:

To measure the ground loop fluid flow rate, an in-line flow meter was installed between the ground loop pump(s) and the heat exchanger. Measurement readings of each meter were recorded at the time of installation and verified periodically while conducting insitu testing at each installation within the test and monitoring period.

The flow meters selected were Dwyer Series type UV with an accuracy specification of $\pm 2\%$ @ 70 °F ± 2 °F and 14.7 PSI with a repeatability of $\pm 1\%$ Full Scale @ 70 °F ± 2 °F and 14.7 PSI. (the ground loop fluid temperature span was measured at 30°F - 65°F at a static pressure of 14 PSI).

Refer to Appendix C for detailed flow meter specifications.

5.2.3 Ground loop fluid specific gravity verification:

With the exception of one open-loop heat pump system (well to well); nine closedloop systems contained a standard 25% Methanol-to-water mixture. The specific gravity of the mixture determines the specific heat value which affects the kWh and BTU output calculations for each heat pump. To verify that the recommended 25% Methanol mixture was being used, ground loop fluid from a sampling of three heat pump installations were tested by the Manitoba Hydro Chemical Laboratory to verify their specific gravities. The test results were as follows:

Installation 1: SG = 0.9649 (24% Methanol) Installation 2: SG = 0.9678 (25% Methanol) Installation 3: SG = 0.9678 (25% Methanol)

An averaged specific gravity value of 0.97 was used for all pertinent calculations leading to the determination of SCOP and SEER values.

5.2.4 Ground loop flow meter correction factor:

The flow meter selected to measure the ground loop flow rate was calibrated for 100% water as a medium. A correction factor was therefore applied to determine the correct flow rate using a 25% Methanol mixture with an average specific gravity of 0.97.

Based on the flow meter manufacturer's correction formula, a correction factor of 1.02 was applied to all flow rate calculations. Refer to Appendix D for detailed information.

6.0 Desuperheater Monitoring Method

The energy provided to domestic hot water by the desuperheater (DSH) was calculated by the following equation:

Desuperheater contribution (kWh) = Total Domestic Hot Water Energy (kWh) minus Electrical energy consumed by the water heater (kWh)

Total Domestic Hot Water Energy (kWh) = Energy supplied to domestic hot water usage plus stand-by loss energy of the domestic hot water system.

Energy supplied to domestic hot water usage (flowing water) = $m \cdot c_p \cdot \Delta T$

Stand-by loss energy was calculated by subtracting the electrical energy supplied to the water heater when the desuperheater did not operate for an extended period (e.g. shoulder month) of time from the energy supplied to domestic hot water usage.

The following test points were measured to calculate the energy to domestic hot water usage.

- 1. water heater cold water temperature Fahrenheit (°F) in
- 2. water heater hot water temperature (°F) out
- 3. domestic hot water usage (litres)
- 4. kWh electrical energy consumed by the hot water tank

To ensure that the temperature measurements were recorded only when hot water was being used, two measures were taken:

- 1. A time delay relay was connected to the water meter pulse output so that whenever the pulse output contacts closed; indicating water flow through the hot water tank, the time delay relay would operate, thereby closing a set of normally open contacts. These contacts would remain closed as long as the water meter produced pulses. These contacts were connected to the data logger's digital input channel which recorded the total time that the contacts remained closed (run-time of the hot water tank).
- 2. Secondly, the temperature input channels were locked to the logger's digital input (run-time) channel so that temperature measurements were recorded only when there was water flowing through the hot water tank

7.0 Verification of Measurements & Accuracies:

Refer to Appendix D for a listing of all test instruments and reference standards used for the accuracy verification and insitu testing described in Sections 7.1 and 7.2 below.

7.1 Monitoring equipment accuracy and precision verification:

Individual data acquisition components integral to each complete monitoring system were sample tested to verify manufacturer stated accuracy and precision and to test for any possible defects.

7.1.1 Current Transducers (CT's):

Out of a total inventory of 116 CT's, random sample groups from each CT rating were tested for accuracy. The sample groups consisted of:

- 1. Ten 10 amp CT's,
- 2. Ten 30 amp CT's,
- 3. Eight 50 amp CT's, and
- 4. Eight 100 amp CT's.

Each sample group was tested at a minimum of six test points throughout their range. Each CT was connected to the current input channels of an ENERNET K20 logger.

The instantaneous current measurements from each logger channel were then compared to the current values measured by an NRC certified reference standard.

Each of the four sample groups produced average accuracies of better than 0.42% with standard deviations of less than $\pm 0.74\%$.

7.1.2 Potential Transducers (PT's):

Out of a total inventory of 14 PT's, a random sample of 2 PT's was tested for accuracy.

Each PT was tested at a minimum of six test points throughout their range. Each PT was connected to the potential input channels 1 and 2 of an ENERNET K20 logger The instantaneous potential measurements from each logger channel were then compared to the potential values measured by an NRC certified reference standard.

Each of the PT's produced average accuracies of better than -0.19% with a standard deviation of less than $\pm 0.12\%$.

7.1.3 **RTD** Temperature sensors:

Out of a total inventory of 79 RTD's, a random sample of 10 units were tested for accuracy and precision.

Each RTD was connected to the analog input channels of an ENERNET K20 logger. Testing was conducted at two test points, 25°F and 90°F, which were selected to include the typical range of temperatures expected from seasonal ground loop operation (30°F to 65°F). The RTD's were placed into a temperature bath and the measurements recorded by the data logger channels were compared to a Measurement Canada certified (NRC traceable) digital thermometer.

An average accuracy for the RTD's, was measured at the logger analog inputs, and was tested to be within ± 0.67 °F (1.2 °C) of the measured reading throughout the 25°F to 90°F (-4 °C to 32°C range.

An average precision value of $\pm 0.74^{\circ}$ F (1.3 °C) was measured between the RTD's. This means that there is a maximum average uncertainty of $\pm 0.74^{\circ}$ F (1.3 °C) when calculating Δ T differential between the input and output of the ground loop and desuperheater heat exchangers.

7.1.4 Enernet K20 Data Logger:

Each of the logger's eight analog input channels was verified for precision using RTD simulators of various known resistances.

7.1.5 Ground loop and desuperheater flow meters:

Due to the simplicity of construction, lack of test equipment and reference standard, these devices were not tested. Refer to the manufacturer published accuracy and repeatability specifications in Appendix C.

7.2 Installation and post-installation verification (IN SITU) testing:

A verification test was conducted when the monitoring system was initially installed. The purpose of the verification test was to confirm the following variables:

- 1. Correct data logger programming and referencing,
- 2. Correct CT and PT referencing, connection and sizing,
- 3. Confirm accurate measurement of volts, amps, watts and power factor by the data logger,
- 4. Confirm accurate measurement and logging of the ground loop and desuperheater input/output temperature differentials,
- 5. Compare flow meter readings to manufacturer ratings of the ground loop pump(s) and desuperheater pump,
- 6. Correct operation and logging of the water meter, time delay relay and compressor relay contact closures.

Page 10

After a number of weeks (or months) of normal operation, a follow-up In Situ test was conducted to confirm the variables listed above as well as the Potential Transformers and to verify any changes or defects in the monitoring equipment.

8.0 Test Site Selection:

The intent of the site selection was to monitor various heat pump makes, models and loop configurations, in different geographic locations within Manitoba. It was also intended to monitor only heat pump systems that were designed and installed by established and experienced contractors. All units were equipped with the desuperheater option.

The breakdown is as follows:

1.	Locations:	One test site in northern Manitoba One test site in central Manitoba Eight test sites in southern Manitoba (mix of urban and rural)
		See Map in Appendix B
2.	Manufacturers:	Six different heat pump brands were monitored
3.	Heat Pump Types	E: Five single stage units Five dual stage units Nine water to air units One water to air and water (combination) unit Six heat pumps were equipped with a brushless permanent magnet DC type fan motor Four heat pumps were equipped with permanent split capacitor fan motors (PSC motors)
4.	Loop Types:	Three closed horizontal slinky loops One closed horizontal two pipe loops Four closed vertical loops One well to well system (open loop) One lake loop (closed)

9.0 Heating Season Performance

9.1 Energy Efficiency

The manufacturers ARI tested COP's ranged from 3.2 to 3.9 with an average COP of 3.6. The field monitored test data showed that the seasonal coefficient of performance (SCOP) during the heating season of the monitored ground source heat pump systems ranged from 1.9 to 3.5 with an average of 2.8 over a one year period (see Chart #1 below). SCOP is defined as the total energy (heat) delivered by the system divided by the total energy input to the system over one heating season.

The actual annual energy savings compared to an electric resistance heating system ranged from 3,934 to 29,657 kWh with an average of 15,842 kWh.

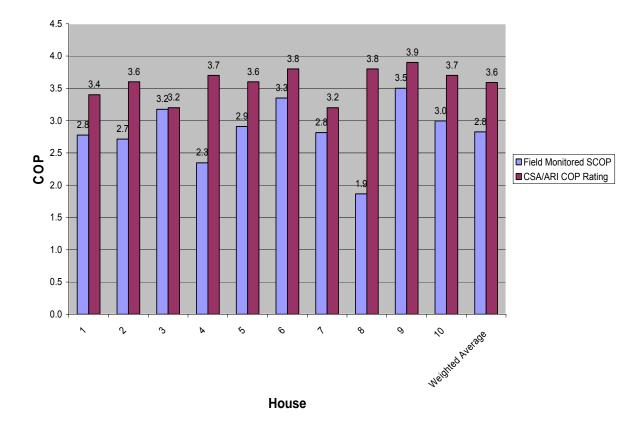


Chart #1: Field Monitored SCOP Versus Manufacturer's CSA/ARI COP

Page 12

The actual seasonal performance of a ground source heat pump was expected to be lower than the manufacturer stated COP (COP based on CAN/CSA 13256 Test Standard "Water-source heat pumps-Testing and rating for performance"). This is because the test standard does not account for:

Ins is because the test standard does not account for.

- 1. the energy consumed by an auxiliary heater that may be required
- 2. shortcomings in the actual system field installation and design
- 3. fluid pumping power required to overcome the external resistance of the ground loop heat exchanger piping. The standard includes for only internal resistance of the unit itself.
- 4. the fan motor power required to overcome the external resistance of the connected ductwork. The standard only includes for the internal resistance of unit itself.
- 5. any start-up and shut down cycling losses
- 6. variations in entering water temperatures
- 7. equipment malfunctions
- 8. variable homeowner operation and lifestyle
- 9. any lack of system maintenance (air filters etc.)
- 10. improper system commissioning.

The ground loop pumps delivered an average of 0.75 LPS (11.9 USGPM) and had an average electrical draw of 695 watts. The CSA test standard allows for a default pumping power of 115 watts moving 11.9 USGPM of fluid. Therefore, the average electrical draw for ground loop pumps in the field was 580 watts higher than the amount allowed for in the CSA test standard.

The fan power allowance determined by the formula in the CSA 13256 test standard was 256 watts. This formula is intended to estimate only the fan power required to overcome the internal resistance of the average heat pump unit. In this study, the actual average fan power draw monitored was 592 watts. Therefore, the average electrical draw for fan motors in the field was 336 watts higher than the amount allowed for in the CSA test standard.

The average electrical consumption of the auxiliary heaters was 190 kWh which was less than 1% of the average annual heating energy provided to the homes by the heat pump systems.

The closed loop systems operated with average annual entering water temperature of 36.0° F (4.2 °C) which is slightly greater than the 32 °F (0 °C) temperature that is required by the CSA/ARI test. This should have resulted in slightly improved field performance figures for closed loop systems. Conversely the well to well system operated at an average annual entering water temperature of 44.9 °F (7.2 °C) which is slightly lower than the 50 °F (10 °C) temperature that is required by the CSA/ARI test. This should have resulted in slightly correspondent to the test. This should have resulted in slightly decreased field performance figures for the well to well system.

Homeowner operation did not appear to significantly affect the system efficiency during the study period for any of the homes.

It is, possible to calculate an estimated SCOP once the following parameters are known:

- average entering fluid temperature
- additional fan power in watts (fan_{additional})
- additional pump power in watts (pump_{additional})
- estimated annual heating energy requirement (AHER_{kWh})
- estimated annual heating energy requirement provided by the auxiliary heating (Aux_{kWh})

The estimated SCOP calculation example below is based on the overall average system in the monitoring study and assumes the actual average entering fluid temperature (heating mode) is nominally the same as the CSA/ARI test requirement.

Average Heat Pump Unit performance (based on CSA/ARI test):

Output _{test} :	11,758 watts
Input _{test} :	3275 watts
COP _{test} :	3.59

Field installed instantaneous COP (COP_{field}) = $\frac{Output_{test} + fan_{additional} + pump_{additional}}{Input_{test} + fan_{additional} + pump_{additional}}$

 $COP_{field} = \frac{11,758 \text{ watts} + 336 \text{ watts} + 580 \text{ watts}}{3,275 \text{ watts} + 336 \text{ watts} + 580 \text{ watts}}$

 $COP_{field} = 3.02$

Estimated SCOP = $\frac{AHER_{kWh}}{(AHER_{kWh}/COP_{field}) + Aux_{kWh}}$

Estimated SCOP = $\frac{24,523 \text{ kWh}}{(24,523 \text{ kWh}/3.02) + 190 \text{ kWh}}$

Estimated SCOP = 24,523 kWh8,310 kWh

Estimated SCOP = 2.95

The estimated SCOP of 2.95 is greater than the annual average SCOP of 2.82 obtained from the actual monitoring of the 10 homes in the study. It is assumed that the difference is caused by items that are not accounted for in the estimation calculation such as cycling losses, actual equipment performance, and equipment maintenance.

9.2 Cost Savings

The heat pump systems provided 6,855 to 42,277 kWh of heating energy to the homes. The average quantity of heating energy provided to the 10 homes was 24,523 kWh.

Average annual electricity savings of 15,842 kWh during the heating season equates to \$998 (based on April 1, 2009 PUB approved Manitoba Hydro Residential Electricity Rates) when compared to electric resistance heat.

This annual savings amount would be reduced to \$578 when compared to a high efficiency natural gas furnace (natural gas prices based on May 1, 2009 PUB approved Manitoba Hydro Residential Natural Gas Rates and includes the Basic Monthly Charge of \$13/month).

9.3 Auxiliary Heat

The ground source heat pump systems provided 97 to 100% (average of 99%) of the total heating energy required by the homes. The remainder was provided by electric resistance auxiliary (back-up) heaters. The auxiliary heaters in the monitored homes used 0 to 929 kWh of electricity. The average electrical consumption was 190 kWh for auxiliary heat.

It appears that all of the heat pump systems were sized to meet the total heating energy requirements for the monitored houses. Since all of the closed loop systems were relatively new, the study does not have enough data to determine what percentage of the annual heating energy requirements the heat pump systems will provide in the long term (10 to 20 years from now). More detailed long term monitoring would be required to determine the sustainability of this performance.

9.4 Entering Fluid Temperatures

The weighted average annual entering fluid temperature for the nine closed loop systems ranged from 32.8 °F to 39.5 °F (0.4 °C to 4.2 °C) with a weighted average of 36.0° F (4.2 °C) see Chart #2 below. This is just slightly greater than the 32 °F (0 °C) temperature that is required by the CSA/ARI test for closed loop heat pumps.

The well to well system had a weighted average annual entering water temperature of 44.9 $^{\circ}$ F (7.2 $^{\circ}$ C) which is slightly lower than the 50 $^{\circ}$ F (10 $^{\circ}$ C) entering water temperature which is the test temperature requires by the CSA/ARI test for open loop systems.

From information provided by several heat pump designers, most systems in Manitoba are designed with minimum entering water temperatures of 25 °F to 30 °F. (-4 °C to -1 °C) The actual minimum entering water temperature ranged from 24.1 °F to 33.3 °F (-4.4 °C to 0.7 °C) for the closed loop systems and 44.2 °F (6.6 °C) for the well to well system (See Chart #3).

The horizontal loops provided the highest entering water temperatures.

All of the vertical loops were drilled in overburden ranging from 50 to 200 feet deep.

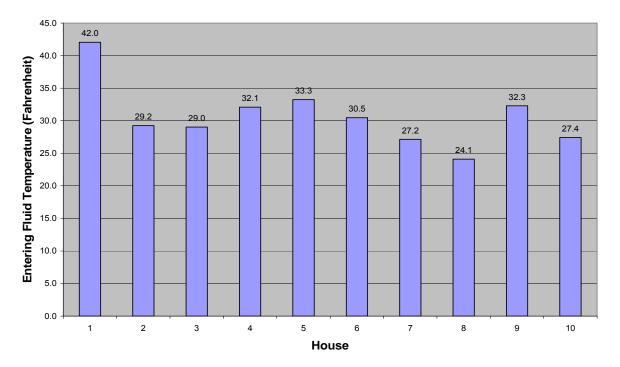
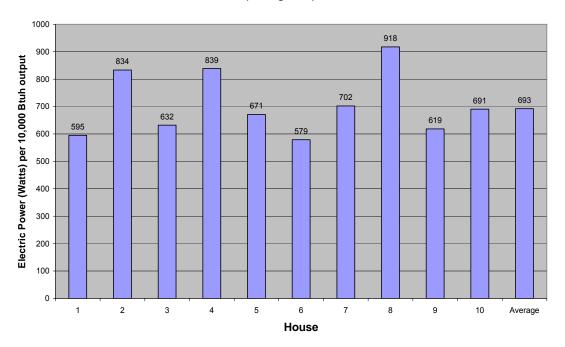


Chart #3: Minimum Entering Fluid Temperature (Heating Mode)



9.5 Compressor

There were five two stage and five single stage compressor systems monitored in the study. The electrical power draw required to drive the compressors ranged from 579 watts to 918 watts per 10,000 BTUh of heat pump output with an average of 690 watts per 10,000 BTUh (See Chart #4 below).

The two compressors with the highest electrical power draw per 10,000 BTUh of heat pump energy output are of the same make and model (839 and 918 watts per 10,000 BTUh of heat pump output). There were three compressors of this model in the study. The third had the lowest energy input when compared to heat pump output (579 watts per 10,000 BTUh of heat delivered). These three compressors are reciprocating compressors that reverse their direction of rotation before mechanically engaging the second stage.

During the monitoring period these three compressors would periodically get stuck in stage one operation even though the system was electrically calling for second stage operation. The COP of the systems was lower during these events since the fan speed was increased to meet second stage heating. If the system could not meet the home's heating requirements when the compressor was still operating in first stage, the auxiliary heater would come on to meet the heating requirements. This would lower the COP even more. According to the equipment supplier, these compressors have had a high failure rate and they are currently being replaced on warranty with an improved type of compressor.

9.6 Ground Loop Pump

The electric power draw for the ground loop pumps ranged of 98 to 330 watts per 10,000 BTUh of heat pump output (heating mode) with a weighted average draw of 163 watts per 10,000 BTUh (see Chart #5 below).

The two poorest performers were on closed loop two stage systems that had pumps that were not staged and were fixed at the second stage flow rate whether the system was on first stage or second stage heating. These systems had a fluid flow rate of approximately 6 usgpm/nominal ton on first stage heating. The third highest pump draw of 275 watts per 10,000 BTUh of heat pump output was for the only open loop system being monitored.

The loop pumps on the seven other homes had draws of less than 161 watts per 10,000 BTUh of heat pump output (heating mode). Five of these systems were single stage units and one was a two stage heat pump that also had a two stage ground loop pump system.

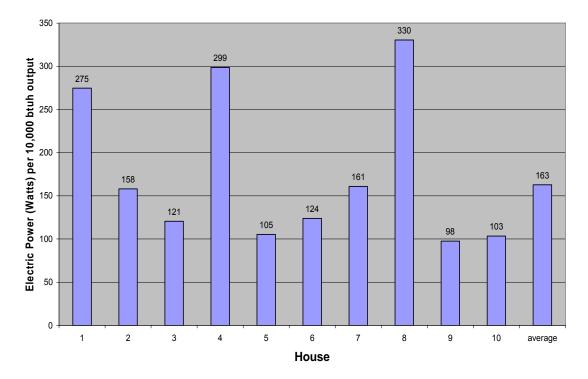


Chart #5: Loop Pump Electrical Power Draw per 10,000 Btuh of Heat Pump Output (Heating Mode)

9.7 Fan Motor

Six of the ten units have an energy efficient brushless permanent magnet DC type motor and four have a permanent split capacitor (PSC) motor. One unit (house # 3) was a combination unit that had a PSC fan motor and hydronic loop pumps included in the fan energy. The electrical power draw ranged from 62 to 232 watts per 10,000 BTUh of heat pump output (heating mode) with an average of 139 watts (See Chart #6 below).

Three of the four PSC motors had approximately the same fan motor energy consumption (149-150 watts per 10,000 BTUh of heat pump output). The fourth PSC motor had a fan motor energy consumption of 205 watts per 10,000 BTUh of heat pump output. Three of the brushless permanent magnet DC type motors had the lowest power consumption (62 to 77 watts per 10,000 BTUh of heat pump output) but the consumption for all six varied greatly (62 to 232 watts per 10,000 BTUh of heat pump output).

The fan motor with the highest usage (232 watts/10,000 Btu) was actually a DC type motor. Duct design did not appear to be the cause of this high usage. Part of the reason that this fan motor used more energy than expected was that it ran a lot of hours at high speed while the compressor was stuck in first stage heating. The two other DC motors had fan motor consumptions that were slightly lower than the PSC motors.

A brushless permanent magnet DC type motor should use less than half of the energy as a PSC type motor.

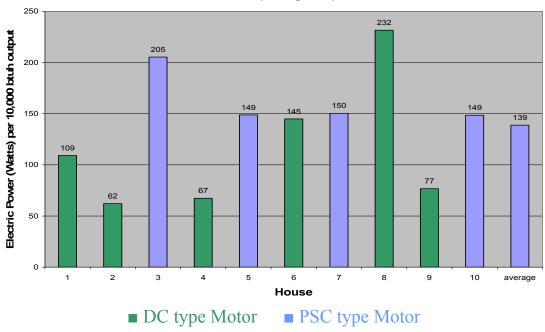


Chart #6: Blower Motor Electrical Power Draw per 10,000 Btuh of Heat Pump Output (Heating Mode)

Page 19

10.0 Cooling Season Performance

The ground source heat pump CSA 13256 test standard "Water-source heat pumps-Testing and rating for performance" rates cooling efficiency by an Energy Efficiency Ratio. Similar to the COP ratio, the EER is an instantaneous test based on specified conditions.

Central split air conditioning systems which are the most common residential cooling systems in Manitoba are rated by SEER (Seasonal Energy Efficiency Ratio). The SEER rating is supposed to provide a customer with a more accurate value to compare operating costs between units over an entire cooling season. The current minimum SEER rating for a central air conditioner is 13.

The test data showed that the field monitored Seasonal Energy Efficiency Ratio (SEER) during the cooling season for these ground source heat pump systems ranged from 8.5 to 19.9 with an average of 13.3 over the 2007 cooling season. SEER is defined as the total energy (heat) removed by the heat pump system (Btu's) divided by the total energy input to the system (watt hours) over one cooling season. The weighted average manufacturer rated EER of the ten units included in this study is 19.7 based on the CSA 13256 test standard (see chart # 7 below).

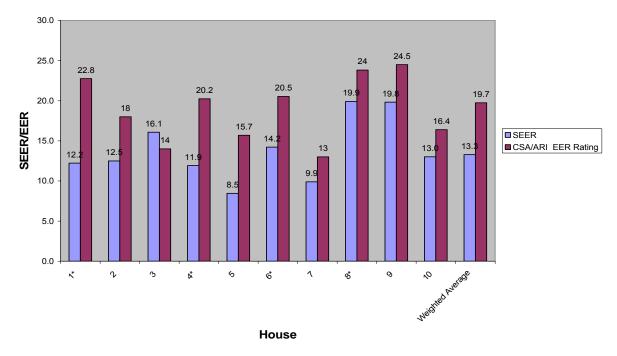


Chart # 7: Field Monitored SEER versus ARI/CSA EER Rating

* CSA/ARI EER Ratings for two stage units is a weighted average of the part load and full load ratings based on actual compressor part load and full load run hours (cooling mode).

Similar to COP, the SEER of a ground source heat pump will generally be lower than the manufacturer's stated EER (EER based on CAN/CSA 13256 Test Standard "Water-source heat pumps-Testing and rating for performance").

This is due to the fact the test standard:

- 1. is an instantaneous test that does not include cycling losses
- 2. may not reflect actual system installation and design
- 3. only includes the fluid pumping power required to overcome the resistance of the unit itself (not the bore field piping).
- 4. only includes the fan power required to overcome the resistance of the unit itself (not the connected ductwork)
- 5. does not account for variations in entering water temperatures
- 6. does not account for variable homeowner operation
- 7. does not account for lack of system maintenance

The ground loop pumps delivered an average of 0.75 LPS (11.9 USGPM) per minute and had an electric draw of 750 watts. The CSA test standard allows for a default pumping power energy of 115 watts to movel1.9 USWG of fluid.

The calculated fan energy (based on the CSA 13256 test standard) to only include the power to overcome the resistance of the average size of heat pump within the study was 256 watts. The actual average fan power draw in the homes that were monitored was 536 watts.

The average annual electricity consumption for these units during the cooling season was 772 kWh (\$49). The estimated average annual cooling savings compared to a central air conditioner with a SEER of 13 is 17 kWh was \$1. This may not be fair comparison since the assumed SEER of 13 for central air conditioners is at test conditions and may not reflect the actual field performance of these units. Actual field performance of conventional central air conditioners could also be expected to be lower than laboratory test results which could increase the potential cooling savings.

The single stage ground source heat pumps operated between 94 and 348 hours in the cooling mode. The two stage units operated between 195 and 541 hours in the cooling mode. The average equivalent full load cooling hours was 218 hours.

11.0 Domestic Hot Water Heater Savings

The ground source heat pump desuperheater provides energy for water heating and thereby reduces electric water heating energy consumption.

In the winter, when the heat pump is delivering heat energy to the house, some of that heat energy is diverted to heat the domestic hot water; therefore it is assumed that the energy being delivered to the domestic hot water system is at the same COP as the heating system.

In summer, the heat pump is removing heat from the house and rejecting it to the ground loop. Some of this heat energy is diverted to the desuperheater and to the domestic hot water heater. This energy is considered "free" heat because it would have otherwise been rejected to the ground. However, in heating dominated climates with significantly unbalanced ground loads, the desuperheater also utilizes some of the heat that could have been rejected back to the ground in the cooling season. This causes the ground load to be even more seasonally unbalanced. This can be compensated for by increasing the size of the borefield (closed-loop systems) but this would increase the initial capital cost.

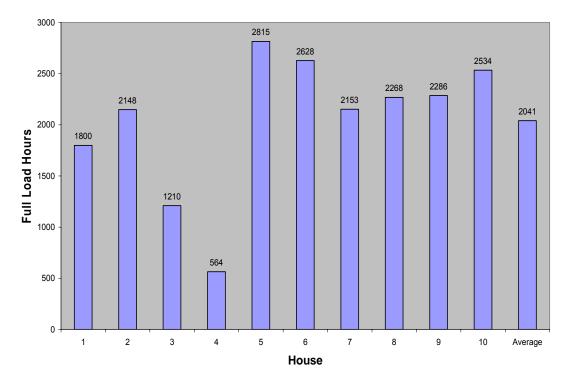
One desuperheater pump failed during the study period, therefore the desuperheater did not provide any heat to the domestic hot water system. Another pump was found to be defective at the start of the study but was replaced.

The homeowner's estimated annual savings ranged from 0 kWh to 1142 kWh with an average annual savings of 610 kWh at a value of \$38, including the one system that was not working. The average savings increased to 678 kWh (\$43) per year when the failed unit was excluded from the average.

A common trade practice to improve the output of a desuperheater that is directly connected to an electric storage water heater is to lower the temperature setting on the bottom element. The lower setting allows the desuperheater to provide more heat to the water heater since the element will not come on as frequently and it provides a lower inlet water temperature to the desuperheater which increases the output of the desuperheater. An issue was discovered during the study related to this practice. The hot water heater could only have a reduced temperature setting on the lower element during the heating season. The setting had to be increased in the nonheating season to meet the customer's hot water requirements. This was determined to be necessary because the heat pump did not operate for many hours in the summer period therefore the desuperheater could not provide much heat to the hot water heater and the customers would run out of hot water. A more effective solution promoted by contractors is to install a second water heater as a pre-heat tank. Although more effective, this increases the capital cost to the customer by an additional cost that is estimated at \$500-\$800.

Page 22

The National Plumbing Code of Canada (2005) requires that the temperature setting of electric water heaters be 60 $^{\circ}$ C (140 $^{\circ}$ F) to minimize the potential of bacterial growth in the water heater. This is also the factory setting of electric water heaters. Almost all of the homes in the study had hot water delivery temperatures lower than 60 $^{\circ}$ C (140 $^{\circ}$ F). Lowering the hot water heater temperature to increase the heat energy benefit provided by the desuperheater could potentially promote the growth of bacteria in the water heater which could become a health hazard.



12.0 Operating Statistics

12.1 Run Hours Heating

The heat pumps operated between 564 and 2815 full load hours with an average of 2041 equivalent full load hours in the heating mode (see Chart #7 below). The home that had the lowest run hours had the heating requirements offset by constantly operating three dehumidifiers throughout the winter. These dehumidifiers effectively operated as space heaters at an SCOP of 1. The other homes did not operate any significant electrical loads in the home and did not utilize any other sources of heat.

House # 3 had the second lowest heating run hours (1,210) and the lowest cooling run hours (94). This was probably due to the heat pump unit itself being over-sized for the application. The unit is a single stage model that has a heating capacity output that was greater than most others in the study. The unit was installed in a new smaller energy efficient home that used the lowest amount of energy during the study period.

Chart # 8: Equivalent Annual Full Load Hours (Heating)

Page 24

12.2 Run Hours Cooling

In cooling mode, the homes operated between 94 and 348 full load hours with an average of 218 equivalent full load hours (See Chart # 8 below). The average operating hours for all two stage units showed that they operated 82% of the time on first stage cooling. One of the two stage unit's had an actual annual run time of 541 hours in the cooling mode.

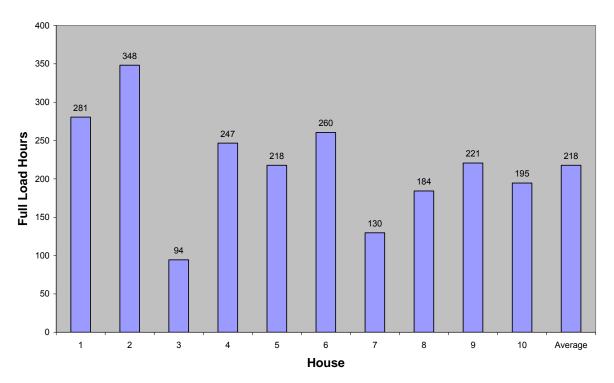
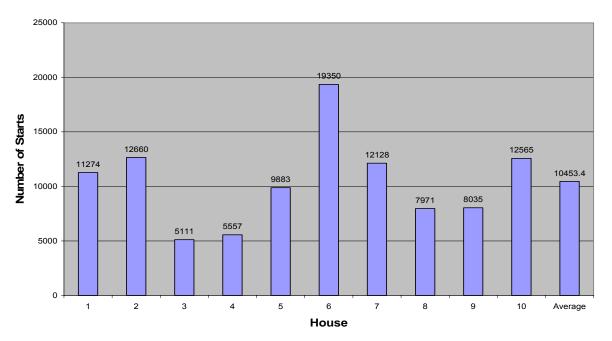


Chart # 9: Equivalent Annual Full Load Hours (Cooling)

There are significant variations in the heating and cooling requirements of homes in Manitoba. The study demonstrated that this variation equated to a load imbalance on the ground loop of approximately 5 units of heat extracted during the heating season for every 1 unit rejected to the ground loop in the summer. This imbalance must be considered when designing and installing a ground loop system.

12.3 Number of Starts


The systems started between 3,026 to 19,350 times per year, with an average of 10,453 starts (see Chart # 10 on page 25). The average number of starts in the heating mode was 9,351 and the average number of starts in the cooling mode was 1,102.

The high number of starts is significant because it can cause power quality issues in some homes. The most significant issue appears to be the frequent flickering or momentary dimming of lights in some homes when the heat pump unit starts due to the high in-rush current required to start the compressor. The compressor in-rush current lasts a fraction of a second and is approximately 10 times the running current. Compact fluorescent lights appear to be less susceptible to flicker compared to other types of lights. Incandescent sources including halogen lights appear to be the most flicker susceptible type of light source.

Manitoba Hydro has installed and tested two high torque start kits (basically an additional capacitor) on two different compressors to determine whether the start kits could significantly reduce the in-rush currents at compressor start-up. These kits are intended for hard starting compressors but it has been suggested that they can significantly reduce the in-rush current of the compressor motor. In both cases, the kits only slightly reduced the in-rush current and did not alleviate the issue of dimming lights (flicker).

Manitoba Hydro has recently installed and tested a newly released electronic soft start device that can be installed on specific models of heat pumps and compressors. This device appears to significantly reduce the in-rush current of the compressor motor. The preliminary test of this device on one compressor showed a 60% reduction of in-rush current at start-up. Manitoba Hydro will be conducting further field tests of this device.

Chart #10: Total Annual Compressor Starts

13.0 Conclusion

The results of this study indicate that there are potentially significant energy savings in a Manitoba climate when utilizing a ground source heat pump compared to electric resistance heat.

Annual energy savings estimates for a ground source heat pump compared to electric heat should utilize an estimated Seasonal Coefficient of Performance (SCOP) instead of the ARI/CSA certified steady state COP. The estimated SCOP can be calculated by accounting for the additional fan, pump, and auxiliary heater electricity requirements that are not included in the CSA/ARI test standard.

The cooling season savings when compared to a new central air conditioner does not appear to be significant. The major benefit for a ground source heat pump compared to a central air conditioner is that the unit itself is indoors and not exposed to the outdoor elements.

Domestic water heating savings from the desuperheater in a heating dominated climate may not justify the capital cost and maintenance costs connected to the desuperheater. There may also be a health and safety issue with respect to the water heater storage temperatures being set lower than the National Plumbing Code requirement. This practice may increase the effectiveness of the desuperheater but could promote bacterial growth in the water heater.

Entering fluid temperature data collected during the study period were within reasonable design parameters. However, the closed systems being monitored were still relatively new, between one and three years old. This study does not provide enough data to determine the sustainability of long term loop and system performance.

The systems operated for an average of 2041 equivalent full load hours in heating mode and only 218 hours in cooling mode. This causes an imbalance to the ground of approximately 5 to1 for heat being extracted from the ground versus heat that is being rejected to the ground. This thermal imbalance could cause significant issues with the heat pump's long term sustainable performance if it was not properly considered at the design phase.

The significant in-rush currents and the high numbers of starts associated with the compressors have the potential to cause a momentary dimming of lights (flicker) or other power quality issues. Ensuring that the electrical system supplying power to the heat pump is robust and utilizing lights that are less susceptible to flicker could help reduce the effects of flicker.

14.0 Recommendations

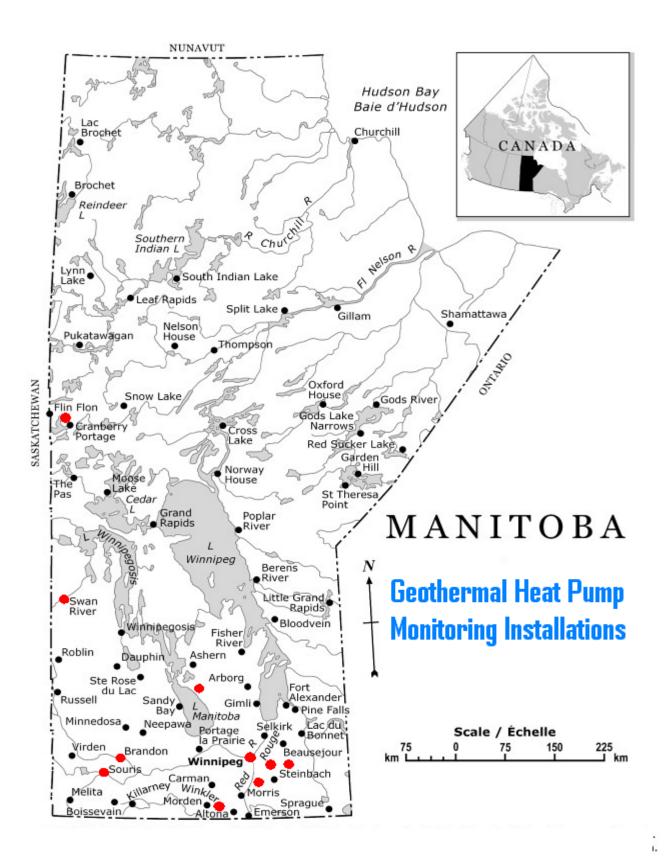
Customers should be provided with energy usage and savings based on an estimated Seasonal Coefficient of Performance (SCOP) that can be achieved and sustained over the expected operating life of the system.

During the monitoring period, several problems with some of the heat pump systems were discovered by the data collected through the monitoring equipment. For this reason, systems should be commissioned after the original installation and recommissioned periodically to ensure proper operation. Installation of basic, permanently mounted metering equipment such as a flow meter, temperature probes on the ground loop and a run hour meter on the heat pump itself could be of significant benefit to both customers and geothermal contractors in diagnosing /trouble shooting problems and maintain proper operation.

Long term monitoring of bore fields in a cold climate such as Manitoba should be undertaken to determine the long term impact on the bore field due to the annual energy imbalance placed on the bore field.

More research and development (R&D) is required to find solutions for the power quality issues created by the starting characteristics of heat pump compressor motors. The R&D should include devices that can reduce the in-rush current, heat pump design, and electrical system design.

Contractors should ensure that the temperature setting of a customer's electric storage water heater is no less than 60 °C (140 °F) as required by the National Plumbing Code of Canada (2005) to avoid bacterial growth in the water heater.



Appendix B

Map of Monitored Sites

Page 40

Appendix C

Data Acquisition Devices

C.1 RTD Temperature Sensors:

Specifications:	Elkor Technologies Inc. No: ET-TP-U-1000/4 Type: 385, 1000 Ohm, Platinum, 4" Probe Enclosure: 1/4" stainless steel (316) tubing Conductor: 11' 105°C rated
Accuracy:	Class B ± 0.5 °F @ 32 °F to ± 8.3 °F @ 1562 °F ± 0.3 °C @ 0 °C to ± 4.6 °C @ 850 °C
	Note: Ground source temp span = $32^{\circ}F$ to $65^{\circ}F$ (0°C to 18°C) Class B approximate errors: Avg Error = $\pm 1.5\%$ (per RTD) Avg ΔT error = $\pm 3.0\%$
Repeatability:	better than 0.8% (-100°C to 100°C)
Response Time:	Probe T (0.625) better than 10 seconds

C.2 Current Transducers:

Specifications:	Magnalab Inc.
	Type: SCT-0750
	Output: 0.333 mV
Accuracy:	\pm 1.0% of measured value
2	(10% to 130% of rated current)

C.3 Potential Transducers:

Specifications:	Highland. Type: C282 Output: 0.333 mV
Accuracy:	± 1.0% of measured value

C.4 Ground Loop Flow Meter:

Specifications:	Dwyer Instruments Inc. Type: UV-3112 range 2.0-20.00 GPM (8-76 LPM) UV-5112 range 4.0-40.00 GPM (20-150 LPM)
Accuracy:	± 2% @ 70 °F ± 2°F (21.1°C) and 14.7 PSIA
Repeatability:	± 1% Full Scale @ 70 °F ± 2°F(21.1°C) and 14.7 PSIA
Scale Resolution:	0.5 USWG (2 litres)
Correction Factor:	For 25% Methanol with Specific Gravity of 0.95423
Correction Fa	actor = Instrument Reading x 1.02

C.5 Water Meter:

Specifications:	ABB Water Meters Inc. Type: Industrial Positive Displacement C-700 Bronze, Magnetic Drive
Pulse Output:	Pulser Type "B" (2P) One contact closure = 1 litre

C.6 Data Logger:

Specifications:	ENERNET Corporation Type: K20 Energy Recorder
	RMS Current- 8 ChannelsRMS Voltage- 8 ChannelsRMS Power- 8 ChannelskWh- 8 ChannelskVAh- 8 ChannelsPower Factor- 8 Channels
	Analog Inputs -8 Channels
	Pulse/Runtime/- 8 Form "A" Channels Rate Counter
	Communications: Local RS-232 and modem.
Accuracy:	Power/kWh: \pm 0.4% of reading 100% to 5% of full scale at Unity to 0.5 PF.
	Amps/Volts: $\pm 0.4\%$ of full scale.
	Power Factor: ± .02 PF, 100% to 5% of full scale.
	Analog: $\pm 0.25\%$ full scale
Resolution:	Power: 0.1% FS minimum
	kWh: 0.05% FS minimum
	Amps/Volts: 0.1% FS minimum
	Power Factor: 0.01 PF
Analog:	Voltage:1.0 mVResistance:0.3 ohmsTemperature:0.1°C

Appendix D

Test Instruments and Reference Standards

D1. Reference Standards (used to verify the accuracies of the insitu test instruments and data acquisition devices of the heat pump monitoring system) :

Digital thermometer:

Model:	Guideline Instruments Ltd. 50 °C to -30°C
Serial No:	57806
Certified by:	Measurement Canada (NRC Traceable)
Certificate No:	V05-0368

Voltmeter and Ammeter:

Model:	Radian Research Inc
	RM-15-14
Serial No:	501457
Certified by:	Measurement Canada (NRC Traceable)
Certificate No:	EP-04-048

D2. Test Instruments (used for insitu testing of each heat pump installation):

Voltmeter and (Clip-on) Ammeter:

Appendix E

SCOP and SEER Calculation Constants

D.1 Specific Heat for 25% Methanol:

25% Methanol SH = 0.95423 Btu/lb·F (3.995 kJ/kg·C)

D.2 Specific Gravity for 25% Methanol:

25% Methanol SG = 0.9678(Confirmed by chemical analysis lab reports conducted on two samples of GL fluid)

D.3 Density of 25% Methanol:

Density 25% Methanol = 8.09 lb/USWG (0.97 kilogram/litre)

 $(8.34 \text{ lb/USG}(\text{density of water}) \times 0.97 \text{ S.G} = 8.09 \text{ lb/USWG}).$

D.4 Ground Loop Flow Meter correction factor: for 25% Methanol:

Correction Factor = Flow Meter Reading x 1.02

Based on Dywer manufacturer's correction formula:

 $Q2 = Q1 \times \sqrt{1/S.G}$

Where:Q2 = True Flow Value Q1 = Flow meter reading S.G = Specific Gravity of fluid

D.5 Specific Gravity of Water = 8.34 lb/USWG (1 kilogram/litre)

D.6 Specific Heat of Water = 1.0 Btu/lb·F (4.19 kJ/kg·C)

Appendix F

Monthly Heat Pump Energy Data

			Тав	le # 1: Hou	lse # 1 Mo	nthly Hea	t Pump Da	Table # 1: House # 1 Monthly Heat Pump Data for 2007						
Electricity Usage (kWh)	January	February	March	April	May	June	July	August	September	October	November	December	Totals	
Total Heat Pump System	1,802	1,898	1,106	642	322	269	436	293	308	532	944	1,168		9,720
Auxiliary Heater	46	210	56	44					8		42			406
Compressor Total	1,022	991	600	334	161	124	203	112	127	275	650	922		5,525
Compressor Heating	1,022	991	600	311	111	20		8	83	266	650	922		4,985
Compressor Cooling				23	51	105	203	105	44	6				539
FAN Total	204	205	135	86	75	88	113	92	90	114	156	186		1,556
FAN heating	187	192	103	54	18	သ		3	28	59	125	143		914
FAN Cooling				7	16	33	64	39	17	3				180
FAN Circulating	17	13	33	37	41	51	49	58	58	53	31	43		484
Ground Loop Pump Total	487	466	302	175	86	88	145	79	75	150	297	324		2,687
Ground Loop Heating	487	466	302	160	61	11		4	44	143	297	324		2,300
Ground Loop Pump Cooling				15	38	77	145	75	31	7				388
Desuperheater Pump Total	45	29	32	18	11	10	15	9	9	18	35	46		277
Desuperheater Pump Heating	45	29	32	16	7	1		1	5	17	35	46		235
Desuperheater Pump Cooling	-		•	2	4	9	15	8	3	1				42
DHW Tank Electricity Consumption	130	183	258	310	317	345	327	304	332	326	216	174		3,223
													Totals	
Ground Loop Heat of Extraction (kWh)*	3,470	4,108	2,351	1,369	388	66		26	288	962	2,196	2,772		17,995
Ground Loop Heat of Rejection (Btu)*	•	•	•	764,111	1,347,844	2,940,561	5,636,730	2,958,484	1,240,686	267,989			15,	15,156,404
*Ground Loop Heat of Extraction and Heat of Rejection include loop pump electric power	at of Rejection	on include lo	la dund do	ectric powe										
													Weighted Average	erage
Average COP	2.64	2.91	2.84	3.04	2.63	2.54	N/A	N/A	2.42	2.65	2.62	2.67		2.75
Average EER	NA	NA	NA	15.5	11.7	12.2	12.0	12.1	12.3	12.8	N/A	N/A		12.2

12.5	NA	N/A	N/A	7.7	13.2	12.1	13.7	14.0	10.8		IA NIA	N/A N/A	Average EER
2.7	2.4	2.8	2.3	2.4	2.0	2.5	3.8	3.4	3.0	2.9	3.0	2.9	Average COP
Weighted Average										lectric power	de loop pump e	Kejection inclu	"Uround Loop Heat of Extraction and Heat of Rejection include loop pump electric power
17,428,079				252,843	3,784,009	10,360,466	2,864,155	166,193	412	•	•	- - -	Ground Loop Heat of Rejection (Btu)*
19,287	2,914	2,473	1,342	728	77	4	83	205	959	2,526	3,849	4,126	Ground Loop Heat of Extraction (kWh)*
Totals													
34				0	7	20	6	0	0				Desuperheater Pump Cooling
174	34	26	13	6		0	→	2	9	24	27	32	Desuperheater Pump Heating
208	34	26	13	7	8	20	6	2	9	24	27	32	Desuperheater Pump Total
229	•			3	49	136	38	2	0	•		•	Ground Loop Pump Cooling
1,518	305	199	86	44	4	0	4	13	72	191	286	313	Ground Loop Heating
1,747	305	199	86	48	53	137	42	15	72	191	286	313	Ground Loop Pump Total
4		0	0	0	3	0	0	_	0	(0)	0	0	FAN Circulating
90				→	19	52	16	2	0				FAN Cooling
596	115	75	33	18	2	0	2	5	26	95	106	119	FAN heating
689	115	75	33	19	23	52	18	8	26	95	106	119	FAN Total
858				22	181	518	130	7	0				Compressor Cooling
8,005	1,474	954	856	427	20	2	21	61	344	913	1,401	1,532	Compressor Heating
8,435	1,474	954	428	449	201	520	151	68	344	913	1,401	1,532	Compressor Total
72	0	9		4	46		0		<u> </u>		0	11	Auxiliary Heater
11,139	1,929	1,263	560	526	331	729	218	93	453	1,221	1,820	1,996	Total Heat Pump System
Totals	December 1	November	October	September	August	July	June		ril May	March April	February Ma	January F	Electricity Usage (kWh)
)07) Data for 2(Table # 2: House # 2 Monthly Heat Pump Data for 2007	# 2 Mont	# 2: House	Table			

16.	0.0	0.0	15.2	16.5	16.4	15.1	25.3	0.0	0.0	0.0	0.0	0.0	Average EER
	3.25	3.40	3.36	2.35	0.00	0.00	2.76	2.90	3.01	3.14	3.10	3.11	Average COP
Weighted Average								Wer	electric po	dund doc	on include IC	at of Kejectio	*Uround Loop Heat of Extraction and Heat of Kejection include loop pump electric power
4719477	0	0	47524	558,587	1,192,992	365,052 2,555,321	365,052	0	0	0	0		Ground Loop Heat of Rejection (Btu)*
12539	2,503	1,932			0	0		431.0	703	2,063	2,503	984	Ground Loop Heat of Extraction (kWh)*
Totals													nisianeu 12 January, 2000
											70	for part of 20	**Used 2006 Data - Faulty temperature probe for part of 2007
	73	65	76	15	0	0	0	13	22	82	110	25	Zone Pumps
		28	16	5	0	0	0	11	15	40	48	20	Primary Hydronic Pump
	0	0	0	0	1	2	0	0	0	0	0	0	Desuperheater Pump Cooling
	8	6	2	0	0	0	1	1	2	5	7	3	Desuperheater Pump Heating
	8	6	2	1	1	2	1	1	2	5	7	3	Desuperheater Pump Total
	0	0	0	6	13	30	0	0	0	0	0	0	Ground Loop Pump Cooling
	137	96	51	13	0	0	14	27	41	115	150	65	Ground Loop Heating
	137	96	52	19	13	30	14	27	41	115	150	65	Ground Loop Pump Total
	0	0	1	0	0	0	0	0	0	0	0	0	FAN Circulating
	0	0	0		13	31	0	0	0	0	0	0	FAN Cooling
	56	40	20	2	0	0	15	4	13	34	55	23	FAN heating
	56	40	22	8	13	31	15	4	13	34	55	23	FAN Total
	0	0	2	21	43	89	13	0	0	0	0	0	Compressor Cooling
3727	732	527	296	78	0	0	27	156	234	631	746	300	Compressor Heating
3894	732		298	66	43	89	39	156	234	631	746	300	Compressor Total
	0	0	0	0	0	0	0	0	0	0	0	0	Auxiliary Heater
5711	1,049	762	465	147	70	152	69	212	327	907	1,116	435	Total Heat Pump System
Totals	December	November	October	September	August	July	June	May	April	March	February	January***	Electricity Usage (kWh)
					or 2006**	np Data fo	Heat Pun	use # 3	Table # 3: House # 3 Heat Pump Data for 2006**	Tab			

N/A	1 1	NA		12.9 N/A	11.9	10.9	15.1	NA		N/A	N/A	N/A	
2.81 2.81	81	2.81		2.48	NIA	N/A		2.12 N/A	2.25	2.14	2.11	2.25	Average COP
										:			
)0Wer	p electric p	und dool 3	tion includ	at of Rejec	*Ground Loop Heat of Extraction and Heat of Rejection include loop pump electric power
0 0	0	0		1,089,557	4,813,960	6,397,173 4,813,960	4,525,307	0	0	0	0	0	Ground Loop Heat of Rejection (Btu)*
581 876	31	581		43	N/A	N/A		87 N/A	321	268	583	1,703	Ground Loop Heat of Extraction (kWh)*
													***December 1-15, 2006 Data
											2007	g of data in 2	**2006 Data used - problem with downloading of data in 2007
0 0	0	0		0	0	0	0	0	0	0	0	0	Desuperheater Pump Cooling
11 17	11	11		1	0	0	0	2	7	6	13	36	Desuperheater Pump Heating
11 17	11	11		1	0	0	0	2	7	6	13	36	Desuperheater Pump Total
0 0	0	0		15	71	96	51	7	0	0	0	0	Ground Loop Pump Cooling
83 124		83		6	0	0	0	13	49	44	86	259	Ground Loop Heating
83 124		83		21	71	96	51	22	49	44	86	259	Ground Loop Pump Total
0 10		0		0	10	17	6	8	8	24	11	9	FAN Circulating
0 0	0	0		5	17	53	30	2	0	0	0	0	FAN Cooling
15 26		15		1	0	0	0	Б	11	15	24	40	FAN heating
15 36		15		6	27	70	38	15	19	39	36	48	FAN Total
0 0	0	0		50	244	322	173	20	0	0	0	0	Compressor Cooling
176 266		176		13	0	0	0	48	156	141	313	821	Compressor Heating
176 266		176		63	244	322	173	89	156	141	313	821	Compressor Total
0 0	0	0		0	0	0	0	0	0	0	0	7	Auxiliary Heater
284 433		284		91	333	471	254	86	223	206	448	1162	Total Heat Pump System
October November December**			$\mathbf{\Omega}$	September	August	July	June	May	April	March	February	January	Electricity Usage (kWh)
)06***	Table # 4: House # 4 Monthly Heat Pump Data for 2006***	Pump D	thly Heat	e # 4 Mon	4: House	Table #			

8	NIA		A NA	5 N/A	7	8	1	10	NA				Average EER
2.91	2.99	2.75	2.72	2.55	N/A	N/A	2.94	3.19	2.84	2.84	2.84	3.01	Average COP
Weighted Average									, r				-
								ver	ectric pov	loop pump é	tion include	at of Rejec	*Ground Loop Heat of Extraction and Heat of Rejection include loop pump electric power
7,521,105	0	0	0	43,080	1,499,425	145,140 1,813,875 4,019,586 1,499,425	1,813,875	145,140	0	0	0	0	Ground Loop Heat of Rejection (Btu)*
23,434	4,278	1,798	883	289	N/A	N/A	73	1,346	1,761	2,724	4644	5,637	Ground Loop Heat of Extraction (kWh)*
Totals													***2006 Data:Communication Failed
													**DSH disconnected
6	0	0	0	0	0	0	5	0	0	0	0	0	Desuperheater Pump Cooling
17	0	0	0	0	0	0	_	16	0	0	0	0	Desuperheater Pump Heating
23	0	0	0	0	0	0	6	16	0	0	0	0	Desuperheater Pump Total**
94	0	0	0		21	52	19	2	0	0	0	0	Ground Loop Pump Cooling
1,218	222	106	54	18	0	0	4	60	100	156	234	263	Ground Loop Heating
1,311	222	106	54	19	21	52	22	62	100	156	234	263	Ground Loop Pump Total
0	0	0	0	0	0	0	0	0	0	0	0	0	FAN Circulating
140	0	0	0	1	31	78	28	2	0	0	0	0	FAN Cooling
1,720	311	152	77	26	0	0	5	85	141	220	332	370	FAN heating
1,860	311	152	77	27	31	78	33	88	141	220	332	370	FAN Total
427	0		0	4	95	238	84	7	0	0	0	0	Compressor Cooling
7,759	1,437	706	350	129	0	0	26	408	639	989	1,448	1,630	Compressor Heating
8,186	1,437	706	350	132	95	238	109	415	639	989	1,448	1,630	Compressor Total
929	63		<u> </u>	2	0	0	0	18	24	28	386	407	Auxiliary Heater
12,309	2,034	965	483	180	146	367	171	599	904	1,393	2,399	2,669	Total Heat Pump System
Totals	December	November D)er	September Octob	August	July	June***	May***	April	March	February	January	Heat Pump Usage (kWh)
				7	Table # 5: House # 5 Monthly Heat Pump Data for 2007	Pump Da	thly Heat	:# 5 Mon	5: House	Table #			

14.2		N/A	N/A	13.9 N/A	13.0	12.7	15.4	16.5	A	A NA	N/A	N/A	N/A N/A	Average EER
3.33	3.30		3.43	3.63	3.70	3.80	3.56	3.05	3.14	3.16	3.19	3.34	3.35	Average COP
Weighted Average	Weigt													
										ric power	pump elect	include loop	of Rejection	*Ground Loop Heat of Extraction and Heat of Rejection include loop pump electric power
18,444,468	0	<u> </u>		476,925	2,756,938	5,449,659	7,303,671	2,457,275	0	0	0	0	0	Ground Loop Heat of Rejection (Btu)*
31,906	5,985		3,703	1,979	898	138	14	208	1,049	2,404	3,974	5,727	5,827	Ground Loop Heat of Extraction (kWh)*
	Totals													
SO	<u> </u>				0	=	4	-	C	_	C	<u> </u>	_	
30 667.	<u> </u>		4	21		<u> </u>		<u>، د</u>	19	<u>, ह</u>	, e	, <u>32</u>	<u>, 28</u>	Desuperneater Pump Heating
335	ප			22	. 14	. =	, 14		19	इ. इ.	ප	32	: &	Desuperheater Pump Total
167	0			4	26	52	ß	21	0	0	0	0	0	Ground Loop Pump Cooling
1,826	346		191	90	39	6	_	12	63	148	250	343	336	Ground Loop Heating
1,993	346		191	94	65	58	ន	33	63	148	250	343	336	Ground Loop Pump Total
428	⇒	9	29	46	51	57	60	58	50	છ	16	7	12	FAN Circulating
226	0			7	38	67	ß	29	0	0	0	0	0	FAN Cooling
2,136	408		277	143	59	7	1	21	82	182	284	336	337	FAN heating
2,790	419		306	196	148	131	146	108	132	212	301	342	349	FAN Total
698	0			18	112	232	258	79	0	0	0	0	0	Compressor Cooling
8,539	1,625		917	456	208	33	చు	58	289	663	1,095	1,578	1,614	Compressor Heating
9,238	1,625		917	474	320	265	261	137	289	663	1,095	1,578	1,614	Compressor Total
0	0			0	0	0	0	0	0	0	0	0	0	Auxiliary Heater
14,356	2,440		1,455	786	548	466	485	286	503	1,059	1,696	2,295	2,337	Total Heat Pump System
	December Totals		November	October	September	August	July	June	May	April N	March A	February Ma	January Fe	Heat Pump Usage (kWh)
						for 2007	'ump Data	Table # 6: House # 6 Monthly Heat Pump Data for 2007	:#6 Mon	f 6: House	Table #			

9.89	NA	N/A N	NA	9.57	11.13	9.60	10.28	NA	N/A	N/A	N/A	NA	Average EER
2.81	2.39	2.62	2.84	2.90	N/A	5 NA	7 2.95	2.87	2.94	3.00	3.05	2.93	Average COP
Weighted Average													
						ľ	ľ)ower	n electric r	mu aoo	on include	it of Rejecti	*Ground Loop Heat of Extraction and Heat of Rejection include loop nump electric power
18,444,468	0	0	476,925	2,756,938	5,449,659	2,457,275 7,303,671 5,449,659		0	0	0	0	0	Ground Loop Heat of Rejection (Btu)*
21,194	3204	2296	1209	646	0	2 0	9 42	759	1604	2824	4543	4067	Ground Loop Heat of Extraction (kWh)*
Totals													
12	0	0	0	0.3	2	8			0	0	0	0	Desuperheater Pump Cooling
60	_	6	10	4	0	0	5,	6	10	12	2	8	Desuperheater Pump Heating
71		6	10	5	2	2 8	<u>.</u> 3 2	6	10	12	2	8	Desuperheater Pump Total
97	0	0	0	3	13	3 68) 13		0	0	0	0	Ground Loop Pump Cooling
1,696	342	199	88	46	0	3 0	7 3	57	118	204	332	307	Ground Loop Heating
1,793	342	199	88	48	13	5 68	7 15	57	118	204	332	307	Ground Loop Pump Tota
4	0	0	0	0	0	0 0	0 (0	0	0	0	4	FAN Circulating
98	0	0	0	3	13	3 70) 13		0	0	0	0	FAN Cooling
1,585	300	192	88	45	0	3 0	3	55	112	193	305	293	FAN heating
1,688	300	192	88	48	13	5 70	5 16	55	112	193	305	297	FAN Total
337	0	0	0	9	46) 242) 40		0	0	0	0	Compressor Cooling
7,402	1,422	895	423	221	0	4 0	3 14	258	526	899	1,416	1,330	Compressor Heating
7,739	1,422	895	423	230	46	4 242	3 54	258	526	899	1,416	1,330	Compressor Tota
7	0	0	0	0	0	0 (0 (0	0	0	7	Auxiliary Heater
11,298	2,065	1,292	609	330	74	7 388	5 87	376	767	1,308	2,055	1,948	Total Heat Pump System
Totals	December	November	October	September	August	July	June	May	April	March	February	January	Heat Pump Usage (kWh)
				007)ata for 2	Table # 7: House # 7 Monthly Heat Pump Data for 2007	nthly Hea	;e # 7 Mo	7: Hous	Table #			

19.9	N/A	N/A	7.3	18.3	19.5	20.4	3 21.4	16.8	5.3	NA	NA	N/A	Average EER
1.84	1.84	1.73	1.68	1.76	N/A	N/A	2.05	1.62	1.72	1.82	1.97	1.90	Average COP
Weighted Average								WEI	Secure boy	ioob bumb ¢		It OI NEJECTIO	. Otomini Poob ugai ot extraction and ugai of velection memory loop bumb electric bower
15,745,056	0	0	11,034	450,375	8,321,438 3,175,225		2,824,635	908,292	54,057	0	0		Ground Loop Heat of Rejection (Btu)*
12,860	2,517	1,427			0	0	1 12	7 241	787	1,687	2,755	2,548	Ground Loop Heat of Extraction (kWh)*
Totals													
34	0	0	0.0		7	18	6		0	0	0	0	Desuperheater Pump Cooling
342	61	49	26	7	0	0	0.3	<u>)</u> 10	26	49	53	61	Desuperheater Pump Heating
376	61	49	26	8	7	18	6	<u>)</u> 12	26	49	53	61	Desuperheater Pump Tota
238	0	0	0.4	8	48	125	42	2 14	2	0	0	0	Ground Loop Pump Cooling
2,526	475	347	181	51	0	0) 2	69	181	348	415	455	Ground Loop Heating
2,764	475	347	181	59	48	125	3 4	83	183	348	415	455	Ground Loop Pump Tota
177	4	12	17	23	24	20	3 24	b) 23	16	8	2	3	FAN Circulating
98	0	0	0.1	3	20	48	3 17	8	_	0	0	0	FAN Cooling
1,770	376	171	77	22	1	0	5	1 25	94	224	416	363	FAN heating
2,046	380	183	95	47	45	69	6 42	2 56	112	232	418	366	FAN Total
401	0	0	<u> </u>	13	85	205	7 67	t 27	4	0	0	0	Compressor Cooling
7,016	1,411	852	403	117	0	0	6	3 153	433	901	1,389	1,351	Compressor Heating
7,417	1,411	852	404	130	85	205	1 73	7 181	437	901	1,389	1,351	Compressor Tota
280	35	3	5	0	0	0	0	5	72	47	83	· 29	Auxiliary Heater
12,884	2,362	1,433	710	245	185	416) 166	1 336	831	1,578	2,359	2,262	Total Heat Pump System
rotals	December Totals	November	October	September	August	July	June	May	April		February March	January	Heat Pump Usage (kWh)
				7	ta for 200	Table # 8: House # 8 Monthly Heat Pump Data for 2007	onthly Hea	use # 8 Mc	;#8:Hou	Table			

Totals 178	<u> </u>	0 18 18 59 24	0 8 8 0 26 49	0.8 0.8 0.8	2.1 7 36	8.4 8.4	4.5 5.2 5.2 5.2	0.4 4.4 15 39	0 10 10 23 23	0 26 0 4 4 5	0 8 8 0 11 12 4	0 33 0 126 9	FAN Circulating Ground Loop Pump Total Ground Loop Pump Cooling Desuperheater Pump Total Desuperheater Pump Cooling
5,599 3,932 244 457 44	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	527 0 378 378 71 47 0 21		5 2 7 66 12 55 67 0 14 8	²⁶ 0 42 3 0 3 0 82	5 23 0 75 0 240	<u>5 12 1 65 64 11 77 0 65</u>	20 <u>-1 12 55 -7 88 95 0 167</u>	4 0 275	710 526 74 70	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,040 7771 0 95	Total Heat Pump System Auxiliary Heater Compressor Total Compressor Cooling FAN Total FAN Cooling FAN Cooling FAN Cooling
als	December Totals	November	October	tember	Data for 2 August	It Pump C July	nthly Heat June	Table # 9: House # 9 Monthly Heat Pump Data for 2007 Irch April May June July August	# 9: Hous April	Table #	February	January	Heat Pump Usage (kWh)

13.0	NA	NA	NA	NA	12.8	13.2	13.5	N/A	N/A	N/A	N/A	N/A	Average EER
3.00	3.13	2.94	3.01	2.91	NA	N/A	2.80	2.72	3.02	3.00	2.92	3.01	Average COP
Weighted Average									power	dumb electric	i inciuae ioop	II OI KEJECHOR	. Otomud Poob Hear of Extraction and Hear of Kelection include loob brand electric bower
10,155,197	0	0	0	0	1,753,028	4,520,959	3,423,369	457,841	0	- - - 0	0	· · · · 0	Ground Loop Heat of Rejection (Btu)*
21,115	3793	2727	1159	269	0	0	40	349	1288	2897	4091	4501	Ground Loop Heat of Extraction (kWh)*
Totals													
													**2006 Data:Temperature Probe Failed
14	0	0	0	0	2	6	4.5	0.6	0	0	0	0	Desuperheater Pump Cooling
169	30	24	10	2	0	0	0.4	3.5	=	25	30	32	Desuperheater Pump Heating
182	30	24	10	2	2	6	4.9	4.1	=	25	30	32	Desuperheater Pump Total
78	0	0	0	0	14	35	26	4	0	0	0	0	Ground Loop Pump Cooling
1,062	182	141	58	14	0	0	2	20	66	149	208	222	Ground Loop Heating
1,140	182	141	58	14	14	35	28	24	66	149	208	222	Ground Loop Pump Total
114	0	0	0	44	14	13	27	15	0	0	0	0	FAN Circulating
132	0	0	0	0	22	57	48	6	0	0	0	0	FAN Cooling
1,526	266	207	82	19	0	0	دى	31	92	210	295	320	FAN heating
1,772	266	207	82	63	36	70	78	52	92	210	295	320	FAN Total
438	0	0	0	0	80	199	140	19	0	0	0	0	Compressor Cooling
7,097	1,219	961	399	86	0	0	15	136	436	986	1,368	1,481	Compressor Heating
7,535	1,219	961	399	98	80	199	155	155	436	986	1,368	1,481	Compressor Total
195	0	0	0	0	0	0	0	0	0	0	119	76	Auxiliary Heater
10,824	1,697	1,333	548	177	133	310	266	235	605	1,371	2,019	2,130	Total Heat Pump System
Totals	December ^{**} Totals	November**	October	September	August	July	June	May	April	March /	February	January	Heat Pump Usage (kWh)
					for 2007	Pump Data	Table # 10: House # 10 Monthly Heat Pump Data for 2007	use # 10 Mo	le # 10: Ho	Tab			

Appendix G

Domestic Hot Water Data

A	в	С	D	m	Ţ	G	т		ح	ĸ
						Total Hot Water	Hot Water Heater		Electric	
	Average Water Heater	Average Water Heater Average Water Heater Hot Water	Hot Water	Energy delivered Calculated	Calculated	Energy	Electricity	Energy provided by	Energy to	Net energy
	Inlet Temperature	Outlet Temperature	Usage	to water usage	Stand-By	(kWh)	Usage	Desuperheater (kWh)	Heat Pump	savings (kWh)
House	(degrees Celsius)	(degrees Celsius)	(litres)	(kWh)	Loss (kWh)	E+F	(kWh)	G-H	(kWh)*	ŗ
	7.5	55.5	55776	3105	1797	4901	3223	1678		1109
2	16.6	53.5	50954	2185	1865	4050	2260	1790	649	1142
3	3 15.3	49.6	45779	1834	2134	3967	3057	910	260	650
4	13.6	49.9	30176	1274	2448	3721	3334	388	153	235
5	5 12.9	44.0	23088	831	1211	2042	2042	0	0	0
6	j 12.8	52.5	43294	1995	909	2903	2224	679	216	463
7	7 14.4	50.0	47222	1950	1155	3105	2805	301	86	202
8	3 15.2	58.4	61728	3097	757	3854	2521	1333	748	585
6) 14.6	46.0	46476	1700	1101	2800	1692	1109	272	836
10) 12.1	48.8	55169	2352	927	3279	2026	1254	396	879
Average	13.5	50.8	45966	2032	1430	3462	2518	944	336	610

*Electric energy to heat pump in cooling mode is the electric energy to the desuperheater pump only.

longer to satisfy the home's heating requirements since its heating capacity was reduced by the desuperheater. *Electric energy to heat pump in heating mode is the energy provided by the desuperheater divided by the COP of the heat pump system. The heat pump runs

			ŀ	louse # 1 Dome	stic Hot W	ater Data				
Α	В	C	D	E	F	G	H		J	K
Month	Average Water Heater Inlet Temperature (degrees Celsius)	Average Water Heater Outlet Temperature (degrees Celsius)	Hot Water Usage (litres)	Energy delivered to water usage (kWh)	Calculated Stand-By Loss (kWh)	Total Hot Water Energy (kWh) E + F	Hot Water Heater Electricity Usage (kWh)	Energy provided by Desuperheater (kWh) G-H	Electric Energy to Heat Pump (kWh)*	Net energy savings (kWh) I-J
January	6.9	55.2	4629	260	153	412	130	282	107	176
February	6.9	56.4	4560	262	138	400	183	216	74	142
March	7.0	54.6	5334	295	153	447	258	189	66	123
April	6.9	55.1	5166	289	148	436	310	126	39	87
May	7.3	56.1	4282	242	153	395	317	77	23	55
June	8.2	57.2	4449	253	148	400	345	55	12	43
July	7.5	55.6	4340	242	153	395	327	68	18	50
August	8.5	55.8	3840	211	153	363	304	59	8	51
September	8.3	57.1	4560	258	148	406	332	74	22	52
October	8.1	55.2	4827	264	153	417	326	90	33	57
November	7.4	52.5	4546	238	148	386	216	170	65	105
December	7.1	55.2	5243	292	153	445	174	271	101	169
Annual	7.5	55.5	55776	3105	1797	4901	3223	1678	569	1109

Table 12: Domestic Hot Water Data for House # 1

Table 13: Domestic Hot Water Data for House # 2

			ŀ	louse # 2 Dome	stic Hot W	ater Data				
Α	В	C	D	E	F	G	H	I	J	K
						Total Hot	Hot Water			
	Average Water	Average Water				Water	Heater		Electric	
	Heater Inlet	Heater Outlet	Hot Water	Energy delivered	Calculated	Energy	Electricity	Energy provided by	Energy to	Net energy
	Temperature	Temperature	Usage	to water usage		(kWh)	Usage	Desuperheater (kWh)	-	savings (kWh)
Month	(degrees Celsius)	(degrees Celsius)	(litres)	(kWh)	Loss (kWh)	E+F	(kWh)	G-H	(kWh)*	ŀJ
January	16.8	53.8	3554	153	158	311	60	251	86	164
February	16.8	53.8	3528	152	143	295	62	233	79	154
March	15.9	53.1	4806	208	158	366	174	192	66	126
April	15.1	52.4	5008	217	153	370	264	106	36	70
May	15.6	53.3	5160	226	158	385	352	33	9	24
June	17.5	56.6	4718	214	153	367	319	49	7	42
July	18.9	53.8	4312	175	158	333	300	33	20	12
August	18.8	53.9	3254	133	158	291	229	62	10	52
September	16.9	51.6	4111	165	153	319	201	117	47	71
October	15.9	51.3	4027	166	158	324	165	159	70	89
November	17.6	53.5	3949	164	153	318	73	245	87	157
December	13.9	54.6	4527	214	158	372	61	311	132	179
Annual	16.6	53.5	50954	2185	1865	4050	2260	1790	649	1142

			ŀ	louse # 3 Dome	stic Hot W	ater Data				
Α	В	C	D	Ε	F	G	Η	I	J	K
Month	Average Water Heater Inlet Temperature (degrees Celsius)	Average Water Heater Outlet Temperature (degrees Celsius)	Hot Water Usage (litres)	Energy delivered to water usage (kWh)	Calculated Stand-By Loss (kWh)	Total Hot Water Energy (kWh) E + F	Hot Water Heater Electricity Usage (kWh)	Energy provided by Desuperheater (kWh) G-H	Electric Energy to Heat Pump (kWh)*	Net energy savings (kWh) I-J
January	14.0	46.1	1929	72	181	253	81	172	55	117
February	13.0	48.5	4752	196	164	359	220	139	45	94
March	12.4	53.9	5071	244	181	425	347	78	25	53
April	12.9	49.7	3423	146	175	322	294	28	9	19
May	15.2	53.1	3728	164	181	345	312	34	12	22
June	14.9	49.2	3511	140	175	315	300	15	5	9
July	16.8	48.8	3956	147	181	328	296	32	0	32
August	17.7	49.7	3968	147	181	329	291	38	0	38
September	17.1	50.5	4155	161	175	336	281	55	13	42
October	17.7	48.8	3911	141	181	322	240	83	24	58
November	16.5	48.3	3662	135	175	310	198	112	33	79
December	15.5	48.1	3713	140	181	322	198	124	38	86
Annual	15.3	49.6	45779	1834	2134	3967	3057	910	260	650

Table 14: Domestic Hot Water Data for House # 3

 Table 15: Domestic Hot Water Data for House # 4

			ŀ	louse # 4 Dome	stic Hot W	ater Data				
Α	В	C	D	E	F	G	H	I	J	K
Month	Average Water Heater Inlet Temperature (degrees Celsius)	Average Water Heater Outlet Temperature (degrees Celsius)	Hot Water Usage (litres)	Energy delivered to water usage (kWh)	Calculated Stand-By Loss (kWh)	Total Hot Water Energy (kWh) E + F	Hot Water Heater Electricity Usage (kWh)	Energy provided by Desuperheater (kWh) G-H	Electric Energy to Heat Pump (kWh)*	Net energy savings (kWh) I-J
January	11.9	51.1	2403	109	208	317	264	53	23	29
February	14.9	49.6	2282	92	188	279	228	51	24	27
March	15.7	50.1	2421	96	208	304	239	66	31	35
April	11.9	49.7	2571	113	201	314	309	5	2	3
May	12.8	49.4	2810	120	208	327	326	1	1	1
June	14.4	48.7	2399	96	201	297	295	2	0.2	1
July	13.1	49.5	3376	143	208	351	341	10	0.4	9
August	13.5	50.5	2878	123	208	331	319	12	0.3	12
September	14.1	50.0	3226	134	201	336	314	22	8	14
October	12.7	49.4	2590	110	213	323	323	0	0	0
November	13.6	50.6	2277	98	201	299	269	30	11	19
December	14.3	50.8	943	40	208	248	107	141	52	89
Annual	13.6	49.9	30176	1274	2448	3721	3334	388	153	235

					ater Data				
В	C	D	E	F	G	Н	I	J	K
Average Water Heater Inlet Temperature (degrees Celsius)	Average Water Heater Outlet Temperature (degrees Celsius)	Hot Water Usage (litres)	Energy delivered to water usage (kWh)	Calculated Stand-By Loss (kWh)	Total Hot Water Energy (kWh) E + F	Hot Water Heater Electricity Usage (kWh)	Energy provided by Desuperheater (kWh) G-H	Electric Energy to Heat Pump (kWh)*	Net energy savings (kWh) I-J
11.2	40.0	1546	52	119	171	171	0	0	C
10.6	40.8	1447	51	110	160	160	0	0	C
12.1	42.4	1801	63	114	178	178	0	0	C
12.3	41.7	1972	67	112	180	180	0	0	C
11.1	47.9	2067	88	87	175	175	0	0	C
14.5	44.5	2086	73	87	160	160	0	0	C
14.2	46.1	1817	67	92	159	159	0	0	C
15.7	46.5	1874	67	94	161	161	0	0	C
13.2	45.4	3202	120	104	224	224	0	0	C
14.6	46.4	1552	57	83	140	140	0	0	C
13.4	45.6	1900	71	89	160	160	0	0	C
12.4	40.2	1824	59	116	175	175	0	0	C
12.9	44.0	23088	831	1211	2042	2042	0	0	C
	Average Water Heater Inlet Temperature (degrees Celsius) 11.2 10.6 12.1 12.3 11.1 14.5 14.2 15.7 13.2 14.6 13.4 12.4	Average Water Heater Inlet Temperature (degrees Celsius) Average Water Heater Outlet Temperature (degrees Celsius) 11.2 40.0 10.6 40.8 12.1 42.4 12.3 41.7 11.1 47.9 14.5 44.5 14.5 44.5 13.2 45.4 13.2 45.4 13.4 45.6 12.4 40.2	Average Water Heater Inlet Average Water Heater Outlet Hot Water Usage (degrees Celsius) 11.2 40.0 1546 10.6 40.8 1447 12.1 42.4 1801 12.3 41.7 1972 11.1 47.9 2067 14.5 44.5 2086 14.5 44.5 3202 14.2 45.4 1874 13.2 45.4 3202 14.6 46.4 1552 13.4 45.6 1900 12.4 40.2 1824	Average Water Heater Inlet Temperature (degrees Celsius) Average Water Heater Outlet Temperature (degrees Celsius) Hot Water Usage (litres) Energy delivered to water usage (litres) 11.2 40.0 1546 522 10.6 40.8 1447 51 12.1 42.4 1801 633 12.3 41.7 1972 67 11.1 47.9 2067 88 14.5 44.5 2086 73 14.2 46.1 1817 67 15.7 46.5 1874 67 13.2 45.4 3202 120 14.6 46.4 1552 57 13.4 45.6 1900 71 12.4 40.2 1824 59	Average Water Heater Inlet Average Water Heater Outlet Hot Water Usage (legrees Celsius) Energy delivered to water usage (litres) Calculated Stand-By Loss (kWh) 11.2 40.0 1546 52 119 10.6 40.8 1447 51 110 12.1 42.4 1801 63 114 12.3 41.7 1972 67 112 11.1 47.9 2067 88 87 14.5 44.5 2086 73 87 14.2 46.1 1817 67 92 15.7 46.5 1874 67 94 13.2 45.4 3202 120 104 14.6 46.4 1552 57 83 13.4 45.6 1900 71 89 12.4 40.2 1824 59 116	Average Water Heater Inlet Average Water Heater Outlet Hot Water Usage (degrees Celsius) Energy delivered to water usage (litres) Total Hot Water Energy (kWh) Total Hot Water 11.2 40.0 1546 52 119 171 10.6 40.8 1447 51 110 160 12.1 42.4 1801 63 114 178 12.3 41.7 1972 67 112 180 11.1 47.9 2067 88 87 175 14.5 44.5 2086 73 87 160 14.2 46.1 1817 67 92 159 15.7 46.5 1874 67 94 161 13.2 45.4 3202 120 104 224 14.6 46.4 1552 57 83 140 13.4 45.6 1900 71 89 160 13.4 40.2 1824 59 116 175	Average Water Heater Inlet Average Water Heater Outlet Hot Water Usage (legrees Celsius) Energy delivered (legrees Celsius) Total Hot Water (kWh) Hot Water Heater 11.2 40.0 1546 52 119 171 171 10.6 40.8 1447 51 110 160 160 12.1 42.4 1801 63 114 178 178 12.3 41.7 1972 67 112 180 180 11.1 47.9 2067 88 87 175 175 14.5 44.5 2086 73 87 160 160 14.2 46.1 1817 67 92 159 159 15.7 46.5 1874 67 94 161 161 13.2 45.4 3202 120 104 224 224 14.6 46.4 1552 57 83 140 140 13.4 45.6 1900 <	Average Water Heater Inlet Average Water Heater Outlet Hot Water Usage (iteres) Energy delivered to water usage (iteres) Total Hot Water Stand-By (kWh) Hot Water Heater Energy (kWh) Energy Usage (kWh) Energy provided by Usage (kWh) 11.2 40.0 1546 52 119 171 171 00 11.2 40.0 1546 52 119 171 171 00 10.6 40.8 1447 51 110 160 160 0 12.1 42.4 1801 63 114 178 00 12.3 41.7 1972 67 112 180 180 0 11.1 47.9 2067 88 87 175 175 0 14.5 44.5 2086 73 87 160 160 0 14.2 46.1 1817 67 92 159 159 0 15.7 46.5 1874 67 94 161 161 0 </td <td>Average Water Heater Inlet Average Water Heater Outlet Hot Water Usage (litres) Energy delivered to water usage (litres) Total Hot Water Loss (kWh) Hot Water Fenergy (kWh) Energy provided by Usage (kWh) Electrict Usage (kWh) Electric Energy provided by Usage Electric Energy provided by Usage Electric Energy to Heat Pump (kWh)* 11.2 40.0 1546 52 119 171 171 0 0 10.6 40.8 1447 51 110 160 60 0 0 12.1 42.4 1801 63 114 178 178 0 0 11.1 47.9 2067 88 87 175 175 0 0 14.5 44.5 2086 73 87 160 160 0 0 14.2 46.1 1817 67 94 161 161 0 0 15.7 46.5 1874 67 94 161 161 0 0 14.6 46.4 1552</td>	Average Water Heater Inlet Average Water Heater Outlet Hot Water Usage (litres) Energy delivered to water usage (litres) Total Hot Water Loss (kWh) Hot Water Fenergy (kWh) Energy provided by Usage (kWh) Electrict Usage (kWh) Electric Energy provided by Usage Electric Energy provided by Usage Electric Energy to Heat Pump (kWh)* 11.2 40.0 1546 52 119 171 171 0 0 10.6 40.8 1447 51 110 160 60 0 0 12.1 42.4 1801 63 114 178 178 0 0 11.1 47.9 2067 88 87 175 175 0 0 14.5 44.5 2086 73 87 160 160 0 0 14.2 46.1 1817 67 94 161 161 0 0 15.7 46.5 1874 67 94 161 161 0 0 14.6 46.4 1552

Table 16: Domestic Hot Water Data for House #5

2006 Data

The desuperheater pump failed on this unit and was not replaced.

			ŀ	louse # 6 Dome	stic Hot W	ater Data				
Α	В	C	D	E	F	G	Η	I	J	K
Month	Average Water Heater Inlet Temperature (degrees Celsius)	Average Water Heater Outlet Temperature (degrees Celsius)	Hot Water Usage (litres)	Energy delivered to water usage (kWh)	Calculated Stand-By Loss (kWh)	Total Hot Water Energy (kWh) E + F	Hot Water Heater Electricity Usage (kWh)	Energy provided by Desuperheater (kWh) G-H	Electric Energy to Heat Pump (kWh)*	Net energy savings (kWh) I-J
January	10.8	52.6	2902	141	77	218	138	79	24	56
February	11.0	52.6	2467	119	70	189	130	59	18	41
March	10.6	53.6	2977	148	77	226	148	78	24	53
April	13.0	50.0	2132	92	75	166	128	38	12	26
May	13.3	49.6	2117	89	77	166	131	35	11	24
June	12.8	49.5	2539	108	75	183	170	13	6	7
July	14.6	55.0	3667	172	77	249	221	28	14	14
August	14.2	54.1	5745	266	77	343	331	12	11	1
September	16.2	51.3	4299	175	75	250	215	35	11	23
October	15.2	50.5	6009	246	77	323	220	103	28	75
November	12.1	53.0	3006	142	75	217	157	60	17	42
December	9.7	55.1	5434	286	77	363	234	130	39	90
Annual	12.8	52.5	43294	1995	909	2903	2224	679	216	463

Table 17: Domestic Hot Water Data for House #6

			ŀ	louse # 7 Dome	stic Hot W	ater Data				
Α	В	C	D	E	F	G	Η	I	J	K
Month	Average Water Heater Inlet Temperature (degrees Celsius)	Average Water Heater Outlet Temperature (degrees Celsius)	Hot Water Usage (litres)	Energy delivered to water usage (kWh)	Calculated Stand-By Loss (kWh)	Total Hot Water Energy (kWh) E + F	Hot Water Heater Electricity Usage (kWh)	Energy provided by Desuperheater (kWh) G-H	Electric Energy to Heat Pump (kWh)*	Net energy savings (kWh) I-J
January	13.3	49.0	4694	195	98	293	221	72	24	47
February	13.0	49.5	2936	124	89	213	177	36	12	24
March	12.0	49.0	1932	83	98	181	130	51	17	34
April	11.9	49.6	4424	194	95	289	279	10	3	6
May	13.4	50.6	4540	196	98	294	288	6	2	4
June	17.3	53.0	4349	180	95	275	267	9	2	7
July	15.1	49.4	3785	151	98	249	237	12	8	4
August	15.8	49.6	3928	154	98	252	221	31	2	30
September	16.5	50.0	3358	131	95	226	204	21	7	14
October	16.1	50.0	4859	192	98	290	280	10	3	6
November	15.2	49.2	3788	149	95	244	223	21	8	13
December	13.3	50.9	4629	202	98	300	278	22	9	13
Annual	14.4	50.0	47222	1950	1155	3105	2805	301	98	202

Table 18: Domestic Hot Water Data for House # 7

 Table 19: Domestic Hot Water Data for House # 8

			ŀ	louse # 8 Dome	stic Hot W	ater Data				
Α	В	C	D	E	F	G	H		J	K
						Total Hot	Hot Water			
	Average Water	Average Water				Water	Heater		Electric	
	Heater Inlet	Heater Outlet	Hot Water	Energy delivered	Calculated	Energy	Electricity	Energy provided by	Energy to	Net energy
	Temperature	Temperature	Usage	to water usage		(kWh)	Usage	Desuperheater (kWh)	-	savings (kWh)
Month	(degrees Celsius)	(degrees Celsius)	(litres)	(kWh)	Loss (kWh)	E+F	(kWh)	G-H	(kWh)*	ŀ-J
January	16.7	59.1	4851	239	64	303	133	171	96	74
February	16.5	58.7	4720	231	58	289	120	170	91	78
March	15.0	58.4	5336	269	64	333	167	165	97	68
April	14.0	59.0	5146	269	62	331	237	94	61	33
May	13.4	56.5	5391	270	64	334	271	63	40	22
June	13.2	57.9	5929	307	62	369	328	41	7	34
July	15.9	59.3	5855	295	64	359	297	62	18	44
August	15.4	58.7	4685	236	64	300	268	32	7	25
September	15.2	58.2	3917	195	62	257	217	41	27	14
October	16.3	58.7	4988	246	64	310	202	108	72	37
November	15.7	58.0	5080	250	62	312	148	164	102	62
December	15.0	58.8	5830	296	64	360	134	226	129	97
Annual	15.2	58.4	61728	3097	757	3854	2521	1333	748	585

			ŀ	louse # 9 Dome	stic Hot W	ater Data				
Α	В	C	D	E	F	G	Η	I	J	K
Month	Average Water Heater Inlet Temperature (degrees Celsius)	Average Water Heater Outlet Temperature (degrees Celsius)	Hot Water Usage (litres)	Energy delivered to water usage (kWh)	Calculated Stand-By Loss (kWh)	Total Hot Water Energy (kWh) E + F	Hot Water Heater Electricity Usage (kWh)	Energy provided by Desuperheater (kWh) G-H	Electric Energy to Heat Pump (kWh)*	Net energy savings (kWh) I-J
January	14.1	44.6	3873	137	93	231	92	138	41	98
February	13.9	43.8	2511	87	84	172	64	107	31	76
March	14.2	46.0	4005	148	93	241	115	126	37	89
April	13.2	46.0	4637	176	90	267	171	96	27	69
May	13.4	45.4	4485	167	93	260	193	68	17	50
June	19.0	51.9	4472	171	90	261	207	54	6	48
July	14.3	45.4	4122	149	93	242	170	72	8	64
August	15.5	45.3	3180	110	93	203	150	53	2	51
September	15.5	43.7	3792	124	90	214	153	61	12	49
October	15.0	45.9	4174	149	93	243	159	84	21	64
November	14.4	46.7	3663	137	90	228	116	112	29	83
December	12.3	47.4	3562	145	93	238	101	137	42	96
Annual	14.6	46.0	46476	1700	1101	2800	1692	1109	272	836

Table 20: Domestic Hot Water Data for House # 9

 Table 21: Domestic Hot Water Data for House # 10

			H	ouse # 10 Dom	estic Hot W	later Data				
Α	В	C	D	E	F	G	H		J	K
						Total Hot	Hot Water			
	Average Water	Average Water				Water	Heater		Electric	
	Heater Inlet	Heater Outlet	Hot Water	Energy delivered	Calculated	Energy	Electricity	Energy provided by	Energy to	Net energy
	Temperature	Temperature	Usage	to water usage		(kWh)	Usage	Desuperheater (kWh)		savings (kWh)
Month	(degrees Celsius)	(degrees Celsius)	(litres)	(kWh)	Loss (kWh)	E+F	(kWh)	G-H	(kWh)*	l-J
January	10.5	50.6	4349	202	79	281	70	211	70	141
February	9.4	50.3	4637	220	71	292	84	207	71	136
March	9.0	48.8	4343	200	79	279	136	143	48	96
April	9.0	47.7	5043	226	76	302	239	64	21	43
May	11.0	47.6	5382	229	79	308	293	14	5	9
June	12.8	48.4	4908	203	76	279	267	13	5	8
July	15.8	47.7	1689	63	79	141	119	22	6	16
August	17.3	49.1	4979	184	79	262	231	31	2	28
September	16.5	47.9	4209	153	76	230	199	31	11	20
October	14.6	47.5	4862	186	79	264	210	54	18	36
November	10.4	49.1	5381	242	76	318	173	145	67	78
December	8.9	51.4	5387	265	79	344	4	340	72	268
Annual	12.1	48.8	55169	2352	927	3279	2026	1254	396	879

Appendix H

Run Hours and Starts Data

Two Stage Heat Pum Two Stage Heat Pum	Average Equivalent	Average Run Hours	10	9		8		7		6		5		4		3	2				House	
Two Stage Heat Pump: First stage provides 50% output capacity of second stage Two Stage Heat Pump: First stage provides 70% output capacity of second stage Two Stage Heat Pump: First stage provides 70% output capacity of second stage	Average Equivalent Full Load Run Hours				Stage 2	Stage 1	Total		Stage 2	Stage 1	Total		Stage 2	Stage 1	Total			Stage 2	Stage 1	Total	-	
50% outpu	413	483	529	475	236	423	660	392	375	235	609	607	9	385	394	115	476	208	370	578	January	
lt capacity	409	453	494	491	321	282	603	428	410	189	599	540	0	149	149	266	438	258	260	518	February	
of second	276	336	355	348	117	393	510	265	159	408	567	358	0	67	67	204	289	71	321	392	March	Table
stage Stane Fire	140	182	156	135	33	237	270	153) 56	335	391	229		74	75	. 74	109	38	191	229	April	Table 22: Heat Pump Annual Run-Hours
st stane an) 63	87	58	65		116) (123	3 74		5 199	201) 148	3	4 30	5 33) 23		135) 138	May	Pump A
d second s	3 51	7 65	8 70		8	6 <mark>0 61</mark>	3 65	4 21	1 23	9 57	1 80	8 54	3 27	0 52	3 79	9 25	3 65	دى	5 125	8 126	June	nnual Ru
stane riin h	1 107	5 136	0 87	70 114	4	1 181	5 186	1 92	3 49	7 101	0 150	4 120	7 46	2 104	9 150	5 53	5 208	1 15	5 184	6 <mark> 199</mark>	July	n-Hours
	7 49	65	7 34	4 29	5	1 66	6 71	2 17	9 58	1 64	0 122	0 47	6 36	4 73	0 110	3 23	8 80	5	4 112	9 113	August	
not conerat	9 51				4 2	6 6	1 88	7 63	8 42		2 160	7 44		3 22		3 33		1 4	2 101	3 105	September	
£.	111	151	139) 106	2	266	3 270	8 117	2 46	196) 242	1 125)	2 123	2 123	3 49	3 128	4 3	209	212	rlOctober	
	1 232	1 290	9 338	5 236	3 61	o <mark>323</mark>	0 384	7 253	6 <mark>0107</mark>	6 <mark>) 290</mark>	2 398	5 247)	3 187	3 188	9 171	3 283	3 38	9 364	2 402	November	
	2 353	0 406	8 435	6 392	1 243	3 394	4 637	3 408	7 312	0 306	8 618	7 512	_	7 88	68 <mark>8</mark>	1 244	3 329	8 111	4 288	2 399	November December	
	3 2254	<u>6</u> 2721	5 2,728	2 2,507	3 1,037	4 2,830	7 3,867	3 2,282	2 1,640	6 2,498	8 4,137	2 3,032	1 134	3 1,354	9 1,488	4 1266	9 2,497	1 750	3 2,660	9 3,410	Totals	

i wo stage Heat Fump: First stage provides 70% output capacity of second stage. First stage and second stage run hours were not seperated.

Average Equivalent Full Load Run Hours is equal to stage #1 run hours/percent of full load capacity plus stage #2 run hours

Manitoba Hydro

				He	at Pump R	un Hours (I	Heating Mo	ide)						
	House	January	February	March	April	May	June	July	August	September	October	November	December	Totals
	Total	578	518	392	210	85	16		6	62	203	402	399	287
1	Stage 1	370	260	321	174	82	16	0	6	60	200	364	288	2,14
	Stage 2	208	258	71	36	3	0	0	0	2	3	38	111	73
2		476	438	289	109	19	7	1	6	63	128	283	329	2,14
3		115	266	204	74	47	17	0	0	23	48	171	244	12
	Total	394	149	67	75	22	0	0	0	9	123	188	89	11
4	Stage 1	385	149	67	74	20	0	0	0	8	123	187	88	1,1
	Stage 2	9	0	0	1	2	0	0	0	0	0	1	1	
5		607	540	358	229	144	9	0	0	42	125	247	512	2,8
	Total	609	599	567	391	201	32	2	12	96	231	398	618	3,7
6	Stage 1	235	189	408	335	199	27	2	6	73	188	290	306	2,2
	Stage 2	375	410	159	56	1	6	0	6	24	44	107	312	1,4
7		392	428	265	153	74	4	0	0	60	117	253	408	2,1
	Total	659	603	510	267	103	3	0	2	76	269	384	637	35
8	Stage 1	423	282	393	234	99	2	0	2	75	266	323	394	2,4
	Stage 2	236	321	117	33	4	1	0	0	2	3	61	243	1,0
9		475	491	348	135	60	7	0	0	36	106	236	392	2,2
10		529	494	355	156	49	5	0	0	33	139	338	435	2,53
	Average	483	453	336	180	80	10	0	3	50	149	290	406	24
Average Equiva	alent Full Load Run Hours	413	409	276	139	60	8	0	2	39	110	232	353	20

Table 23: Heat Pump Run Hours (Heating Mode)

Table 24: Heat Pump Run Hours (Cooling Mode)

				He		un Hours (
Но	use	January	February	March	April	May	June	July	August	September	October	November	December	Totals
	Total	0	0	0	19	54	110	199	107	43	9	0	0	541
1	Stage 1	0	0	0	17	53	110	184	106	41	9	0	0	520
	Stage 2	0	0	0	2	1	1	15	1	1	0	0	0	20
2		0	0	0	0	4	58	207	74	5	0	0	0	348
3		0	0	0	0	0	8	53	23	11	1	0	0	• •
	Total	0	0	0	0	11	79	150	110	23	0	0	0	373
4	Stage 1	0	0	0	0	10	52	104	73	14	0	0	0	253
	Stage 2	0	0	0	0	1	27	46	36	10	0	0	0	120
5		0	0	0	0	4	45	120	47	2	0	0	0	218
	Total	0	0	0	0	0	48	148	110	63	11	0	0	380
6	Stage 1	0	0	0	0	0	30	99	57	44	9	0	0	240
	Stage 2	0	0	0	0	0	18	49	53	19	3	0	0	140
7		0	0	0	0	0	17	92	17	3	0	0	0	130
	Total	0	0	0	3	20	63	186	69	11	0	0	0	352
8	Stage 1	0	0	0	3	16	60	181	64	11	0	0	0	336
	Stage 2	0	0	0	0	4	3	5	4	0	0	0	0	16
9		0	0	0	0	5	62	114	29	11	0	0	0	221
10		0	0	0	0	9	65	87	34	0	0	0	0	195
	erage	0	0	0	2	11	55		62	17	2	0	0	
Average Equivalent	Full Load Run Hours	0	0	0	1	7	43	107	47	12	1	0	0	218

verage Number of Starts		10			9			œ			7			6			თ			4			ω			2			-		House	
arts	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total		
1,495	0	1649	1649	0	1044	1044	0	1612	1612	0	1592	1592	0	3129	3129	0	703	703	0	1263	1263	0	330	330	0	1600	1600	0	2027	2027	January	
1,256	0	1319	1319	0	807	807	0	1351	1351	0	1253	1253	0	2863	2863	0	673	673	0	780	780	0	805	805	0	1193	1193	0	1513	1513	February	_1
1,335	0	1867	1867	0	1066	1066	0	913	913	0	1381	1381	0	3214	3214	0	1117	1117	0	249	249	0	772	772	0	1278	1278	0	1494	1494	March .	able 25: /
728	0	949	949	0	447	447	19	393	412	0	1008	1008	0	1831	1831	0	799	799	0	302	302	0	311	311	1	518	519	75	625	700	April	Table 25: Annual Heat Pump Compressor Starts
429	14	502	516	5	339	344	71	130	201	0	591	591	0	738	738	39	661	701	15	128	143	0	206	206	3	162	165	227	457	684	May	at Pump
264	197	59	257	213	46	259	215	7	222	181	28	209	89	205	294	459	43	502	62	0	62	34	77	111	253	59	312	297	115	412	June	Compres
552	205	0	205	359	0	359	457	0	457	885	0	885	220	7	227	1,238	0	1,238	169	0	169	258	0	258	1,312	8	1,320	402	0	402	July	ssor Star
264	65	0	65	179	0	179	220	6	226	213	0	213	184	52	236	559	0	559	129	0	129	114	0	114	607	53	660	224	38	262	August	S
356	0	357	357	37	256	293	47	129	176	41	570	611	124	458	582	22	272	294	28	75	103	51	154	205	6	503	509	116	318	434	September	
860	0	1,343	1,343	0	722	722	11	355	366	0	1,224	1,224	25	802	827	0	807	807	0	1,041	1,041	2	232	234	0	1,025	1,025	39	971	1,010	October	
1,261	0	2,004	2,004	0	1,193	1,193	0	644	644	0	1,401	1,401	0	1,686	1,686	0	1,303	1,303	0	066	990	0	773	773	0	1,611	1,611	0	1,003	1,003	November December Totals	
1,654	0	2,034	2,034	0	1,322	1,322	0	1,391	1,391	0	1,760	1,760	0	3,723	3,723	0	1,187	1,187	0	326	326	0	992	992	0	2,468	2,468	0	1,333	1,333	December	
10,453	481	12,083	12,565	793	7,242	8,035	1,040	6,931	7,971	1,320	10,808	12,128	642	18,708	19,350	2,317	7,565	9,883	403	5,154	5,557	459	4,652	5,111	2,182	10,478	12,660	1,380	9,894	11,274	Totals	

Appendix I

Entering Fluid Temperature Data

					Monthly A	verage Entering	Fluid Temperati	ire Heating (Fah	renheit)	8			
House	January	February	March	April	May	June	July	August	September	October	November	December	Weighted Average
1	44.3	44.3	44.4	44.3	44.8	NA	NA	NA	46.3	45.8	45.1	43.4	44.1
2	32.0	32.0	32.7	33.7	46.9	57.6	67.5	61.1	53.8	46.5	38.9	32.9	35.1
3	32.1	31.2	31.1	32.1	32.7	35.1	NA	NA	54.8	50.3	42.3	34.3	34.6
4	36.7	38.8	39.2	38.4	42.5	NA	NA	NA	48.8	44.8	41.7	40.6	39.4
5	35.7	34.5	35.8	36.6	38.3	49.9	NA	NA	54.0	48.2	45.6	37.5	37.7
6	31.8	31.1	31.2	31.5	32.3	35.5	43.5	51.7	50.3	46.3	43.1	36.1	34.7
1	34.1	31.0	35.0	37.5	40.6	45.2	NA	NA	46.5	43.8	39.3	33.5	35.4
8	29.6	27.0	29.3	30.6	34.7	36.7	NA	45.6	41.1	38.7	34.0	30.2	30.9
9	36.4	33.5	34.6	36.0	43.4	46.4	NA	NA	56.8	53.5	50.1	37.8	38.5
10	31.9	29.9	32.8	34.0	39.8	42.8	NA	NA	47.7	44.2	40.4	34.3	34.4

 Table 26: Average Entering Fluid Temperature (Heating Mode)

 Table 27: Average Entering Fluid Temperature (Cooling Mode)

					Monthly A	verage Entering	Fluid Temperatu	ire Cooling (Fah	renheit)	8 -			
House	January	February	March	April	May	June	July	August	September	October	November	December	Weighted Average
1	48.5	51.0	N/A	44.7	45.2	45.5	45.6	46.7	47.1	47.7	NA	NA	44.0
2	NA	N/A	N/A	37.7	41.2	60.9	70.7	69.1	58.2	NA	NA	NA	68.3
3	33.4	N/A	N/A	34.7	NA	39.1	46.6	54.2	56.9	54.6	44.7	NA	49.0
4	40.9	43.8	42.5	37.9	48.8	53.0	57.0	58.0	56.7	54.2	49.8	47.9	56.1
5	NA	N/A	42.9	47.6	NA	51.7	54.9	56.1	58.3	NA	48.9	NA	55.1
6	35.2	NA	32.7	33.5	36.4	38.6	47.5	53.1	52.5	49.9	NA	NA	49.0
1	NA	N/A	N/A	NA	NA	47.6	54.0	54.8	52.4	NA	NA	NA	53.2
8	32.2	29.3	31.2	34. <u>2</u>	41.1	44.6	49.9	50.0	47.8	40.7	NA	NA	48.2
9	48.3	N/A	N/A	NA	41.5	50.3	56.6	59.0	59.8	59.9	NA	NA	54.9
10	NA	N/A	N/A	50.9	46.4	52.0	57.5	60.0	NA	48.9	NA	NA	55.6

Tuble 20. Minimum Maximum Entering Fluid Temperature										
	House									
Entering Fluid Temperature (Fahrenheit)	1*	2	3	4	5	6	7	8	9	10
Minimum (Heating)	42.0	29.2	29.0	32.1	33.3	30.5	27.2	24.1	32.3	27.4
Maximum (Cooling)	57.0	88.5	73.4	84.4	66.7	74.5	80.3	66.9	72	83.1

Table 28: Minimum/Maximum Entering Fluid Temperature

* House 1 is an open system (well to well)