OVERVIEW OF MANITOBA HYDRO'S SYSTEM

David Cormie Joanne Flynn

Outline

- Manitoba Hydro's Existing System
- Hydro System Characteristics
- Planning Objective and Criteria
- Lake Winnipeg Impacts
 - Keeyask and/or Conawapa

Capacity and Energy Defined

- Capacity available
 - Maximum rate of power output
 - Megawatts (MW) that the generator can be relied upon to produce
 - MH system = 6,265 MW
- Energy produced
 - 1 GWh = 1,000 MWh = 1,000,000 kWh
 - MH system generates an average of 32,000 GWh annually
 - Manitoba domestic demand 25,500 GWh annually

Power System

Installed Capacity:

Hydro (winter peak) 5200 MW

Thermal 515 MW

Purchases Capacity:

Imports (Diversity) 550 MW

Wind (250 MW) 0 MW

Total 6265 MW

Transmission Lines:

Total km 6885 km

Manitoba Hydro Drainage Basins

Historical Water Supply

Transmission Interconnections

Long Term Firm
Transfer Capabilities
(Scheduling Limits)

	Export	Import
U.S	1950 MW	700 MW
Ontario	200 MW	0 MW
Sask.	150 MW	0 MW

Reservoir Storage

- Store water for future generation
 - Time of greater value/need
 - 2 12 TWh
- Key reservoirs
 - Lake Winnipeg
 - Cedar Lake
 - Southern IndianLake
- Subject to limits
 - Maximum
 - Minimum

Hydro System Characteristics

Characteristics of a Predominantly Hydro System

- Large Water Variability
- Energy ConstrainedSystem
- Resource Diversity
- Transmission Limitations
- Long Lead Times
- Large Investments

Energy Constrained System

- Designed to meet energy requirements under the critical flow period
- Designed to meet peak load requirements
- Surplus in all flow conditions other than critical flow period

Resource Diversity

- Provides a mix of generation types in times of drought or high fuel prices
- Mix of resources can be achieved by building in Manitoba or by relying on purchased power over interconnections

Transmission Limitations

- Hydro generation is remote
 - requires transmission to move power to load centers
- Lack of transmission means congestion
 - More congestion unless new transmission is built to handle additional surplus
 - Congestion exists today
 - Export to Ontario
 - North Dakota wind
 - Limited ability to move power across Canada/US

Planning Objectives and Criteria

Planning Objectives

- Secure resources to meet the future energy and capacity needs of Manitoba
 - Obligation to serve
- Meet committed firm sales
- Do so at the least net cost to Manitoba customers
- Environmental and social impacts considered

Manitoba Hydro's Generation Planning Criteria

Capacity Criterion

- Sufficient capacity to meet forecast peak load, plus
- 12% reserve
 - increase in demand above forecast
 - breakdown of plant
 - recognizes that load growth and equipment availability is subject to uncertainty

Energy Resource Planning Criterion

- There must be sufficient energy supply available to meet firm energy demand in the event the lowest recorded coincident water supply conditions are repeated
- Sources of dependable energy are
 - hydro, thermal, wind purchases
 - energy imports

Energy Defined

- Dependable Energy
 - Energy produced by the system under the lowest flow conditions on record
- Average Energy
 - The average of energy produced based on all historic flow conditions
- Maximum Energy
 - Energy produced as a result of most favorable flow conditions on record

Hydro Energy

Energy Sources

- Hydro Energy
 - Dependable Inflows, plus
 - Maximum Use of Manitoba Reservoir Storage
- Thermal Energy
 - Station output if operated continuously
 - Derated for outages and maintenance
 - Coal, natural gas
- Wind Energy
 - 85% of average annual wind generation
- Purchased Energy
 - Must be on firm transmission
 - Available under contract
 - Available in off peak periods from organized market

Surplus Energy - By Design

Variability in Hydro Energy Supply

Value of Interconnections

- Provides Market Access
 - Export of surplus power
 - Import of a diverse source of power
- Capacity sharing due to load diversity
- Risk mitigation
 - Emergencies
 - Load forecast
 - Climate change
- Enhances Grid Reliability
 - Sharing of required reserves
- Decreases Overall Regional GHG's

Market Access = Market Price

Summer Day

Winter Day

- Spot market wholesale electricity price
 - Highly variable dependant on many, many factors
 - \$2000 to +\$2000 per MWh
- No typical price
 - Always changing
 - On-peak, off-peak averages used
- Marginal cost of hydraulic energy \$5/MWh
- Hydro is flexible

Spot Price - Change every 5 minutes

Hydro - Large Investments

- High capital cost investment
- Majority of cost in civil structures
- Low, stable operating costs that contribute to stable rate increases
- Large plants can satisfy many years of Manitoba load growth

Hydro - Extremely Long Lead Times

- Exploration, Engineering, Environment
- Negotiations, Approvals, Licensing
- Construction
- Increasingly complex
- 20 years becoming normal 1/2 a career or more
- Keeyask 2019
- Conawapa 2026

Preferred Development Plan

- Keeyask G.S. (695 MW) 2019/20
- Conawapa G.S. (1485 MW) 2026/27
- New 500 kV US Interconnection 2020
- Sale Agreements
 - Minnesota Power
 - Wisconsin Public Service
 - Northern States Power
 - Others

Resource Sequence Comparisons

- Consistent methodology used to evaluate all new resource additions
 - PUB, CEC and NFAT submissions
- Standard Industry Practice
- Applied to all forms of new supply options
 - Hydro
 - Thermal
 - Wind
 - Purchases

System Impacts

- Adding new generation can impact the entire MH system
 - Existing hydro and thermal stations
 - Imports
 - Exports
- Adding new generation in combination with new interconnections, new export and import contracts becomes even more complicated
- Physical, Financial, Environmental and Rates
 - Impacts from new generation only one of many variables

Lake Winnipeg

- 12th largest lake in world
 - 50% of storage in Nelson Churchill watershed
- Primarily regulated for
 - Hydropower 711 to 715 feet
 - Flood Control >715 feet
 - WPA Licence
- LWR regulates flow of Nelson River
 - Outflows controlled at Jenpeg GS
 - 50% more outflow is possible
 - 69% of MH generation downstream
 - Post Keeyask/Conawapa 78%

Preferred Development Plan

Impact on Lake Winnipeg

- What won't change
 - Terms of WPA License
 - Approach to Lake Winnipeg regulation
 - Obligations to stakeholders
- What will change
 - Outflows and Levels
 - Changes will be minor
 - Major driver is water supply

Lake Winnipeg Water Levels

(with and without regulation - 1977-2011)

Questions

