Green Action Centre Evidence on Fuel Switching and DSM

Presentation to the Public Utilities Board of Manitoba

May 1, 2014

Paul Chernick Resource Insight, Inc.

End-Use Fuel Choice

- Electricity versus Gas
- Switching Existing Loads
 - from Gas to Electricity
 - from Electricity to Gas
- Choosing Fuel for New Buildings

Appropriate DSM Targets

- Inter-Jurisdictional Comparisons
- Recommendation for Manitoba Hydro
- Effect on Need

End-Use Fuel Choice

- Which Fuel Should Manitoba Hydro Prefer?
- Manitoba Hydro Projections of Future Fuel-Switching
- Drivers of Uneconomic Fuel Choices
- Responses to Fuel-Choice Market Failures

Which Fuel Is Preferable?

- Gas Reduces Costs
- Gas Reduces Emissions
- Gas Improves Cash Flow
- Gas-Use Efficiency Greater at End Use
 - > 90% versus 25%-50% for electricity
- Gas Is Preferable by Every Measure

Results from Hydro Study

	Switching from Standard Gas Equipment to Electric			
	Furnace	Geothermal (SCOP 2.5)	Geothermal (SCOP 3.5)	Water Heat
NPV Utility Perspective				
Electric	\$3,223	\$1,563	\$1,117	\$10
Natural Gas	\$4,107	\$4,107	\$4,107	\$317
NPV Customer Perspective				
Retaining Some Natural Gas Service	\$9,146	\$12,685	\$10,806	\$727
Eliminating Natural Gas Service	\$7,737	\$11,276	\$9,397	
NPV TRC Perspective	\$15,067	\$16,946	\$14,621	\$1,054
NPV Change in Provincial Cash Flow Out (In)				
Low Equipment Cost	\$6,271	\$939	(\$489)	\$297
High Equipment Cost		\$1,939	\$511	
Net Annual Global CO ₂ e Emissions (kg)	8,919	1,543	139	1,684

Could the Gas Advantage Reverse Over Time?

- Higher Gas Prices? Not likely
- Lower Renewable Costs? Possible
- Pricing CO₂ in US-MISO? *Mixed Effects*

Effect of Higher Gas Prices

- Increase electric market prices
- Improve gas end-use economics

Effect of Lower Renewable Costs

- Wind and solar costs likely to decline
- Hydro project costs tend to rise over time
- More renewables could
 - gradually push out MISO coal and peakers, or
 - back out gas, leaving more coal at margin
- Large price decline necessary to reverse cost benefit of end-use gas

Effects of Pricing CO₂ in MISO

- Would increase cost of coal, compared to gas CTs and CCs, which could lead to:
 - retirement of more coal, lower marginal emissions, or
 - pushing coal to the margin, increasing marginal emissions.
- Would raise export prices, increasing benefit of exporting power.

Brattle Study of CO₂ Displacement (CAC/MH II-133)

Range of Estimates:

- Early period mostly avoids coal
 - ~0.7–0.9 tons/MWh
- Later avoids more gas
 - ~0.5 tons/MWh
 - Perhaps down to gas rate of ~0.4 tons/MWh

Breakeven Avoided Emission Rate

	Breakeven Emission Rate	
Electric Use	(T/MWh)	
GSHP @ 3.5 SCOP	0.82	
GSHP @ 2.5 SCOP	0.58	
Water Heater	0.30	
Furnace	0.23	

Assumes FUEL-SWITCHING Report used 0.85 T/MWh emission rate

Relative CO₂ Emission Rates

- Compared to gas:
 - High-efficiency GSHP are a wash now, but expensive.
 - Low-efficiency GSHP may fall beat gas after 2030, also pricey.
 - Resistance space- and water-heating are likely be worse than gas for several decades.

GHG Policy Implications

- Encourage gas now for space and water heating.
- Monitor MISO marginal emissions.
- If emission rate falls, assess whether highefficiency GSHPs would beat gas, and whether the CO₂ reductions are cost-effective.
- If emission rate falls substantially, re-evaluate standard GSHPs.
- Gas is likely to be preferable for other applications for many decades.

Manitoba Hydro Projects Conversion to Electricity

- Fuel-Switching Report and 2012 Load Forecast
 - Electric dominance in new construction
 - Many conversions to electricity
- 2013 Load Forecast
 - Slower but important trend to electricity
 - Increases load by hundreds of GWh
 - Assumed effectiveness of vague "initiative"

Drivers of Uneconomic Fuel Choices

- Developers choose fuel source
- Contractors prefer electric water heaters
- Customers may have short horizon.
- "Customers do not consider total cost of ownership."
- Customers assume that electricity is environmentally benign

Developers Choose Fuel Source

- Electric equipment is less expensive
- Developers avoid coordinating additional gas work crews
- Developers can get same price for gasand electric-heated homes

Contractors Prefer Electric DWH

 Replacing gas with gas may require checking chimney condition

Customers May...

- Expect to sell before the investment to pays off
- Not consider total cost of ownership
- Assume that electricity is environmentally benign

Responses to Fuel-Choice Market Failures

- Manitoba Hydro Initiative
 - Limited, Unclear
- More-Robust Alternatives are Available

Manitoba Hydro Initiative

- Start date unclear
 - Exhibit Manitoba Hydro-87 (p. 78) indicates
 2010/11 start
 - Appendix D (p. 20) indicates that the initiative were not reflected in the 2012 forecast
- Mostly or entirely information-based
- Considering "going beyond the education approach," but has not decided (Tr. 923–924)

More-Robust Alternatives

- Incentives, like any other DSM opportunity
- Inclining-block rates for residential and small commercial
- Lower demand charges, higher TOU energy charges for large customers
- Hydro: Increase first cost for electric heat
- Centra: Decrease first cost for gas heat

DSM Targets

- Inter-jurisdictional Comparisons
- Recommendation for Manitoba Hydro
- Effect on Need

Inter-Jurisdictional Comparisons

- Manitoba Hydro DSM Plans Are Modest
 - Only about 5% of output over 15 yrs,~0.3%/year
- Other Jurisdictions Have Achieved Much Greater Savings
 - Several examples of >1.3%/year
 - Some are projecting over 2%/year

Reasonable Goals for Manitoba Hydro

	Annual Savings as % Energy	Cumulative GWh Savings
2014/15	0.60%	269
2015/16	0.90%	487
2016/17	1.10%	761
2017/18	1.30%	1,089
2018/19	1.50%	1,472
Annually post-2018/19	1.50%	+~385/yr

Effect on Need

- Manitoba Net Load Would Decline Slightly Over Time
- Existing Resources Would Meet:
 - all Manitoba load
 - all contracted exports
 - proposed exports through WPS 308 MW sale (<70 MW shortage in 2030/31 to 2034/35)
- Additional Resources May Be Justified by Benefits of Exports