PUB Technical Conference

Business Operations Capital
&
Asset Management
July 20, 2017
Purpose & Disclaimer

• Introduction to MH business & capital practices
• Common basis of understanding & language
• Informal and interactive
• Work in process - journey
Outline

• Manitoba Hydro Operations & Assets
• Asset Management
• Business Operations Capital planning process
• Forecasting Asset Replacement
Glossary

- Black start
- System Stability
- Capacity
- Sustainment
- Reliability
- Effective age
- Economic end of life
- PAS 55
- ISO 55000
- Asset Investment Planning (AIP)
- Corporate Value Framework (CVF)
- Portfolio
Operations & Assets
Supply Chain

Small Number of High Cost Assets

Complex Assets & Assets Spanning MB

High Number of Low Cost Assets

24|7 365
Operational Objectives

<table>
<thead>
<tr>
<th>System</th>
<th>Objectives</th>
</tr>
</thead>
</table>
| Distribution System | • Existing customer delivery
 • New customer connection |
| Transmission System | • Regional energy delivery
 • Electric system reliability |
| Generating System | • Supply Manitoba load
 • Generate revenue from surplus energy |
Supply Chain

TRANSMISSION SYSTEM

Total Supply
- Hydraulic & Thermal
- Generating Stations
- Generating Units

Provincial Demand
- Regional Demand
- Local Demand
- Customer

Generalization
- GENERATION
- TRANSMISSION
- DISTRIBUTION
- CUSTOMER
Generating Unit Duty

- SUPPLY LOAD & REVENUE
- STABILITY e.g. LOAD BALANCING
- OPERATIONS e.g. SYSTEM FLOW
- RELIABILITY e.g. FUEL VARIATION
- BLACKSTART
Example: Operating Context
Example: Operating Context

Diagram showing a generating station with layers indicating Total Supply, Thermal & Hydraulic, Generating Stations, Generating Units, Auxiliary Systems, Structures, and Infrastructure.
Kelsey Generating Station

- Water control: spillway, dams, dykes
- Electrical: switchyard, transmission, local distribution
- Buildings: Staffhouse, camp, shops, storage
- Municipal: drainage, water treatment, wastewater, solid waste management
- Communications: tower, fibre
- Transportation: roads, airport
Supply Chain

Provincial Supply
Thermal & Hydraulic
Generating Stations
Generating Units
Auxiliary Systems
Structures
Infrastructure

Provincial Demand
Regional Demand
Local Demand
Customer

Thermal & Hydraulic Generating Stations

Export

13
Generation & Transmission Systems

Regional
- Northern supply
- Southern load
- Province wide delivery
- Varying density
- Remote assets
Adequate Supply
Insufficient Regional Capacity

- Hotspots of growth across Province
- Transmission & distribution system expansion required to serve growth
System Investment

Distribution
- Capacity expansion & deteriorating assets
- Highest need for renewal investment

Transmission
- Capacity expansion for regional load growth
- Acceptable performance at current investment levels

Large assets entering middle-age

Generation
- Sufficient capacity to serve load growth
- Acceptable performance at current investment levels
Asset Management
Asset Management Strategies?

Proactive
- Replace before failure
- Significant in-service failure consequence
- Monitor degradation
- May defer or advance to smooth demand
- Example: Furnace, roof

Reactive
- Run to failure
- Manageable in-service failure consequence
- Life expectancy
- May advance to smooth demand
- Example: Hot water tank, windows
Asset Management is the coordinated activity of an organization to realize value from assets.

– Institute of Asset Management
Asset Management Journey

• Corporate Asset Management (CAM)
 – Centralization
 – Framework for business alignment

• Improvement to capital tools & processes
 – Asset investment planning
 – Capital portfolio management
 – Asset condition assessment
Corporate Asset Management (CAM) Governance Structure

CAM Executive Council
- Vice President level committee
- Chaired by Chief Finance & Strategy Officer
- Provides centralized vision and strategic direction
- Asset Owner

CAM Steering Committee
- Director level Committee
- Chaired by the **Director of Strategic Business Integration**
- Executes MH’s asset management development strategy
- Business owner for processes & tools
Corporate Asset Management (CAM) Framework

• Phase 1
 – Review Asset Management practices at Manitoba Hydro
 – Gap assessment against industry best practices, PAS 55, and ISO 55000
 – Complete – Appendix 5.1 in GRA

• Phase 2
 – Development of AM strategy and policies
 – In-progress

• Phase 3
 – Development of Asset Management implementation road map
 – To be completed following Phase 2
Business Operations Capital Planning Process
(excludes Major New Generation & Transmission)
Changes to Capital Expenditure Categories

- Domestic
- Base & Major
- Business Operations Capital
- Programs
- Projects
- Major New Generation & Transmission
Capital Planning Model
Capital Expenditure Forecast (CEF) is a Snapshot in Time

Potential Investments Portfolio
Projects and Scope Development under consideration

Executing Portfolio
Projects in Flight + Yr 1 Projects Starts + Scope Development

- Project Ending in yr 1
- Project Beginning in yr 1
Capital Expenditures Forecast

• Portfolios:
 – Executing Projects
 – Potential Investments
 – Programs

• For each of:
 – Distributions
 – Transmission
 – Generation
 – Corporate Services (IT, Fleet, Facilities)

• Divided into investment categories
Primary Investment Categories

Capacity & Growth
- Investments required to expand Manitoba Hydro’s generation, transmission, HVDC or distribution assets across the Province
- Provide for future load growth or address existing capacity concerns

Sustainment
- Investments required to sustain the current and future performance capability of Manitoba Hydro’s electrical system
- Address issue of degrading and obsolete assets

Business Operations Support
- Investments that support business operations and are shared or common throughout the corporation
- Ex: IT investments, fleet, tools, administrative buildings
Asset Investment Planning (AIP)

- Asset needs drive capital expenditures
- For immediate operational requirements
- For long term sustainability
- Balancing cost, performance and risk
Objective 1:
Optimize timing and scope of projects

Objective 2:
Forecast long term capital investment requirements

Roadmap is under development

- Build processes, tools & data models
- Populate inventories, collect data
- Calibrate, refine & build proficiency

Asset Investment Planning

Forecast Target

Time

Programs

First Year of CEF

Executing Projects

Potential Investments

Long Term Planning Investments

Target

Build processes, tools & data models

Populate inventories, collect data

Calibrate, refine & build proficiency
Capital Portfolio Management (CPM)

- Based on capital planning model
- Standardization of tools and processes
- Implementation of Asset Investment Planning (AIP) technology - Copperleaf C55
- Development of Corporate Value Framework (CVF)
- Roll out complete by end of 2017
Asset Investment Planning

- Manage Grouped Assets
- Long Term Planning Investments
- Potential Investments
- Executing Projects
- Scope Development

First Year of CEF

Target

Capital

Time

Manitoba Hydro
Programs: Grouped Assets

• Grouped by class or by function
• Examples:
 – Annual replacement for population sustainability
 • Wood poles
 – Life extension
 • U/G cables
 – Run to fail
 • O/H transformers
• Capital expenditures forecasted based on:
 – Population sustainability
 – Projected failure rates
Asset Investment Planning
Planning to Execution
Planning to Execution

Potential Investments
• Multiple alternative solutions under consideration
• Each with:
 – Scope
 – Schedule
 – Budget
 – Value assessment
• No firm start date

Executing Projects
• Selected alternative
• Scope development phase completed, if required
• Confident:
 – Scope
 – Schedule
 – Budget
 – Value assessment
• Firm start date
Capital Approvals & Documents

- **Capital Investment Justification (CIJ)**
 - Replaces Capital Project Justification (CPJ)
 - Funding request for Project, Program or Program Item
 - Authorization to execute

- **Capital Investment Concept (CIC) - new**
 - Request funding for scope development
 - Firm up scope, schedule, budget
Authorization to Spend

- Scope Development
- Capital Project
- Program Items

Key Points:
- Capital Investment Concept (CC)
- Capital Investment Justification (CU)
- POTENTIAL INVESTMENTS
- LONG TERM PLANNING INVESTMENTS

Manitoba Hydro
Portfolio Optimization

- Select alternative and timing of investments
- To deliver the greatest value
- While respecting multiple constraints

Capital Portfolio Before Optimization
Portfolio Optimization

- Select alternative and timing of investments
- To deliver the greatest value
- While respecting multiple constraints

Capital Portfolio after Optimization
Portfolio Optimization

• Select alternative and timing of investments
• To deliver the greatest value
• While respecting multiple constraints

CONSTRAINTS

VALUE ASSESSMENT

Quantify:
• Benefit
• Risk
• Cost

CONSTRANTS

Time
Resources
Money
Corporate Value Framework

Provide safe, reliable and affordable energy to the people of Manitoba.

- **Financial**
 - Maximize cost savings
 - Increase efficiency

- **Reliability**
 - Maintain customer service
 - Increase customer satisfaction

- **Corporate Citizenship**
 - Public perception

- **Environmental**
 - Environmental stewardship

- **Safety**
 - Safety first for employees and community
Corporate Value Framework

Value Measures

<table>
<thead>
<tr>
<th>Value Measure Categories</th>
<th>Value Measures</th>
</tr>
</thead>
</table>
| **Financial** | • Capital Financial Benefit
 | • O&M Financial Benefit
 | • O&M Costs
 | • Financial Risk*
 | • IT Capacity Risk*
 | • Lost Generation Risk**
 | • Export Transfer Capacity Risk*
 | • Productive Workplace Benefit
 | • Risk of Project Execution (non-ITS)
 | • Risk of Project Execution (ITS)
 | • Varying Cost or Revenue Benefit
 | • Generation Revenue Benefit
 | • Investment Cost |
| **Environmental** | • Environmental Benefit
 | • Environmental Risk* |

<table>
<thead>
<tr>
<th>Value Measure Categories</th>
<th>Value Measures</th>
</tr>
</thead>
</table>
| **Reliability** | • Transmission Reliability Risk*
 | • Electrical Delivery Capacity Risk*
 | • Gas Delivery Capacity Risk*
 | • Import Transfer Capacity Risk*
 | • Blackstart Delay Risk*
 | • Distribution Reliability Benefit
 | • Distribution Outage Recovery Benefit
 | • Gas Distribution Reliability Benefit |
| **Safety** | • Safety Risk*
 | • Security Risk* |
| **Corporate Citizenship**| • Compliance Risk*
 | • Public Perception Risk*
 | • Customer Service Benefit |
Optimized Portfolio

- Considers net value (Value – Cost)
- Considers value gained per dollar (Value/Cost)
- Considers multiple project alternatives
- Considers different program levels
- Considers the effects of project deferral
Optimized Portfolio

Executing Portfolio
Projects in Flight + Yr 1 Projects Starts + Scope Development

Potential Investments Portfolio
Projects and Scope Development under consideration

![Diagram showing Executing Portfolio and Potential Investments Portfolio](image-url)
Forecasting Replacement
Run to Failure

- Non critical asset
- Short time frame for replacement
- Low cost/common stock items
- Failure consequence acceptable
- Optimized life cycle is run to failure
- Example: pole top transformers
Proactive Replacement

- Risk assessment and prioritization

- Risk = Probability of Failure (POF) x Consequence (Criticality)

- POF is calculated from the Health Index of your assets and “Effective Age” rather than chronological age

- Replace when RISK COST > REPLACEMENT COST

- Economic end of life
Obsolescence as End-of-Life

• **Functional Obsolescence**
 – Asset no longer meets performance criteria
 – Example: protection equipment does not meet increasing fault levels

• **Technical Obsolescence**
 – Asset no longer supported by the vendor
 – Spare parts no longer available
 – Example: digital equipment

• **Regulatory Obsolescence**
 – Asset no longer meets regulated minimums
 – Environmental (PCB Content)
 – Safety (Clearances, Fault Currents)
Asset Condition Assessment

• Assessment of physical condition
• Methodology customized by asset class – “how to measure condition”
• Condition parameters and weighting factors
 – Measurement points
 – Visual inspections
 – Operating tests
Asset Health Index (AHI)

• Asset Health Index (AHI) adds context to asset condition

• Gives an assessment of
 – Remaining life
 – Probability of failure
 – Degradation over time

• Based on:
 – Specific asset characteristics
 – Current condition assessment
 – Operating context
Risk Assessment

Condition Assessment → Asset Class Characteristics

Industry Experience → Asset Class Characteristics

Asset Utilization → Asset Class Characteristics

MB Hydro Experience → Asset Class Characteristics

Operating Context

Asset Health Index → Degradation Curve

Remaining Life / POF → Risk Assessment

Criticality

Degradation Curve

Risk Assessment
Asset Analytics

• Uses asset health and degradation curves to forecast asset risk in time

• Assesses changes in risk for varying levels of investment
Forecasting Asset Replacement through Condition Monitoring

• Limited to assets with:
 – Large capital replacement cost
 – Significant consequence of in-service failure
 – Measurable condition
 – Predictable degradation & probability of failure
Program Analytics

• Uses asset health and degradation curves to forecast aggregate asset population risk in time

• Assess changes in risk for varying levels of investment
Renewal investments may be forecasted through analytics.
Forecasting Capital Expenditures

• Timing of asset failures is uncertain
 – Operating context may change
 – Risk mitigation or life extension works
• Scope of replacement uncertain due to potential changes in:
 – Technology, codes/standards, methods
• Costs uncertain
 – Market conditions
• Forecast uncertainty increases further into the future
SUMMARY

• Manitoba Hydro Operations & Assets
 – Complicated supply chain
 – Broad mix of assets
 – Regional load growth challenges
 – Concerns with degrading distribution system asset populations
SUMMARY

• Corporate Asset Management (CAM)
 – Centralization
 – Framework for business alignment

• Improvement to Business Operations Capital tools & processes
 – Asset investment planning
 – Capital portfolio management
 – Asset condition assessment
SUMMARY

• Forecasting Asset Replacement Expenditures
 – Limited in its application
 – Forecasts uncertain